

Free your innovation

Freenove is an open- source electronics platform.

www.freenove.com

²ŀǊƴƛƴƎ

When you purchase or use Freenove RFID Starter Kit for Raspberry Pi, please note the following:

 ̧ This product contains small parts. Swallowing or improper operation can cause serious infections and

death. Seek immediate medical attention when the accident happened.

 ̧ Do not allow children under 3 years old to play with or near this product. Please place this product in

where children under 3 years of age cannot reach.

 ̧ Do not allow children lack of ability of safe to use this product alone without parental care.

 ̧ Never use this product and its parts near any AC electrical outlet or other circuits to avoid the potential

risk of electric shock.

 ̧ Never use this product near any liquid and fire.

 ̧ Keep conductive materials away from this product.

 ̧ Never store or use this product in any extreme environments such as extreme hot or cold, high humidity

and etc.

 ̧ Remember to turn off circuits when not in use this product or when left.

 ̧ Do not touch any moving and rotating parts of this product while they are operating.

 ̧ Some parts of this product may become warm to touch when used in certain circuit designs. This is

normal. Improper operation may cause excessively overheating.

 ̧ Using this product not in accordance with the specification may cause damage to the product.

!ōƻǳǘ

Freenove is an open- source electronics platform. Freenove is committed to helping customer quickly realize

the creative idea and product prototypes, making it easy to get started for enthusiasts of programing and

electronics and launching innovative open source products. Our services include:

 ̧ Electronic components and modules

 ̧ Learning kits for Arduino

 ̧ Learning kits for Raspberry Pi

 ̧ Learning kits for Technology

 ̧ Robot kits

 ̧ Auxiliary tools for creations

Our code and circuit are open source. You can obtain the details and the latest information through visiting

the following web sites:

http://www.freenove.com

https://github.com/freenove

Your comments and suggestions are warmly welcomed, and please send them to the following email address:

support@freenove.com

http://www.freenove.com/
https://github.com/freenove
mailto:support@freenove.com

wŜŦŜǊŜƴŎŜǎ

You can download the sketches and references used in this product in the following websites:

http://www.freenove.com

https://github.com/freenove

If you have any difficulties, you can send email to technical support for help.

The references for this product is named Freenove RFID Starter Kit for Raspberry Pi, which includes the

following folders and files:

 ̧ Datasheet Datasheet of electronic components and modules

 ̧ Code Code for project

 ̧ Readme.txt Instructions

{ǳǇǇƻǊǘ

Freenove provides free and quick technical support, including but not limited to:

 ̧ Quality problems of products

 ̧ Problems in using products

 ̧ Questions for learning and technology

 ̧ Opinions and suggestions

 ̧ Ideas and thoughts

Please send email to:

support@freenove.com

On working day, we usually reply to you within 24 hours.

/ƻǇȅǊƛƎƘǘ

Freenove reserves all rights to this book. No copies or plagiarizations are allowed for the purpose of

commercial use.

The code and circuit involved in this product are released as Creative Commons Attribution ShareAlike 3.0.

This means you can use them on your own derived works, in part or completely, as long as you also adopt

the same license. Freenove brand and Freenove logo are copyright of Freenove Creative Technology Co., Ltd

and cannot be used without formal permission.

http://www.freenove.com/
https://github.com/freenove
mailto:support@freenove.com

I Contents ȿ www.freenove.com

/ƻƴǘŜƴǘǎ

Contents .. I

Preface .. 1

Raspberry Pi .. 2

Install the System .. 8

Component List ... 8

Optional Components ... 10

Raspbian System ... 12

Remote desktop & VNC ... 15

Chapter 0 Preparation .. 25

Install WiringPi ... 25

Obtain the Project Code ... 27

Python2 & Python3 .. 28

Code Editor ... 30

GPIO .. 35

GPIO Extension Board ... 39

Breadboard Power Module ... 40

Next ... 41

Chapter 1 LED ... 42

Project 1.1 Blink ... 42

Chapter 2 Button & LED .. 50

Project 2.1 Button & LED .. 50

Project 2.2 MINI table lamp ... 55

Chapter 3 LEDBar Graph ... 61

Project 3.1 Flowing Water Light ... 61

Chapter 4 Analog & PWM .. 66

Project 4.1 Breathing LED ... 66

Chapter 5 RGBLED ... 72

Project 5.1 Colorful LED .. 72

Chapter 6 Buzzer ... 78

Project 6.1 Doorbell ... 78

http://www.freenove.com/

II Contents www.freenove.com ȿ

Project 6.2 Alertor ... 84

Chapter 7 PCF8591 ... 89

Project 7.1 Read the Voltage of Potentiometer .. 89

Chapter 8 Potentiometer & LED 100

Project 8.1 Soft Light ... 100

Chapter 9 Potentiometer & RGBLED 105

Project 9.1 Colorful Light ... 105

Chapter 10 Photoresistor & LED 112

Project 10.1 NightLamp ... 112

Chapter 11 Thermistor ... 119

Project 11.1 Thermometer .. 119

Chapter 12 Joystick ... 126

Project 12.1 Joystick .. 126

Chapter 13 Motor & Driver .. 133

Project 13.1 Control Motor with Potentiometer .. 133

Chapter 14 Relay & Motor .. 144

Project 14.1.1 Relay & Motor ... 144

Chapter 15 Servo ... 152

Project 15.1 Servo Sweep .. 152

Chapter 16 Stepping Motor 161

Project 16.1 Stepping Motor .. 161

Chapter 17 74HC595 & LEDBar Graph 172

Project 17.1 Flowing Water Light .. 172

Chapter 18 74HC595 & 7- segment display. 180

Project 18.1 7- segment display. ... 180

Project 18.2 4- Digit 7- segment display ... 187

Chapter 19 74HC595 & LED Matrix 200

Project 19.1 LED Matrix .. 200

Chapter 20 LCD1602 .. 212

Project 20.1 I2C LCD1602 .. 212

http://www.freenove.com/

III Contents ȿ www.freenove.com

Chapter 21 Hygrothermograph DHT11 222

Project 21.1 Hygrothermograph ... 222

Chapter 22 Matrix Keypad .. 229

Project 22.1 Matrix Keypad ... 229

Chapter 23 Ultrasonic Ranging 239

Project 23.1 Ultrasonic Ranging .. 239

Chapter 24 RFID ... 247

Project 24.1 RFID .. 247

Chapter 25 WebIOPi & IOT .. 266

Project 25.1 Remote LED ... 266

What's next? .. 271

http://www.freenove.com/

1 Preface

ȿ www.freenove.com

support@freenove.com ȿ

Preface

If you want to become a maker, you may have heard of Raspberry Pi or Ard t

matter. Through referencing this tutorial, you can be relaxed in using Raspberry Pi to create dozens of

electronical interesting projects, and gradually realize the fun of using Raspberry Pi to complete creative works.

Raspberry Pi and Arduino have a lot of fans in the world. They are keen to exploration, innovation and DIY

and they contributed a great number of high- quality open source code, circuit and rich knowledge base. So

we can realize our own creativity more efficiently by using these free resource. Of course, you can also

contribute your own strength to the resource.

Raspberry Pi, different from Arduino, is more like a control center with a complete operating system, which

can deal with more tasks at the same time. Of course, you can also combine the advantages of them to make

something creative.

Usually, a Raspberry Pi project consists of code and circuit. If you are familiar with computer language and

very interested in the electronic module. Then this tutorial is very suitable for you. It will, from easy to difficult,

explain the Raspberry Pi programming knowledge, the use of various types of electronic components and

sensor modules and their operation principle. And we assign scene applications for most of the module.

We provide code of both C and Python language versions for each project, so, whether you are a C language

user or a Python language user, you are able to easily grasp the code in this tutorial. The supporting kit,

contains all the electronic components and modules needed to complete these projects. After completing all

projects in this tutorial, you can also use these components and modules to achieve your own creativity, like

smart home, smart car and robot.

Additionally, if you have any difficulties or questions about this tutorial and the kit, you can always ask us for

quick and free technical support.

http://www.freenove.com/
mailto:support@freenove.com

Raspberry Pi 2 www.freenove.com ȿ

ȿ support@freenove.com

Raspberry Pi

Raspberry Pi (called RPi, RPI, RasPi, the text these words will be used alternately later), a micro- computer with

size of a card, quickly swept the world since its debut. It is widely used in desktop workstation, media center,

smart home, robots, and even the servers, etc. It can do almost anything, which continues to attract fans to

explore it. Raspberry Pi used to be running in Linux system and along with the release of windows 10 IoT. We

can also run it in Windows. Raspberry Pi (with interfaces USB, network, HDMI, camera, audio, display and

GPIO), as a microcomputer, can be running in command line mode and desktop system mode. Additionally,

it is easy to operate just like Arduino, and you can even directly operate the GPIO of CPU.

So far, Raspberry Pi has developed to the third generation. Changes in versions are accompanied by increase

and upgrades in hardware. A type and B type, the first generation of products, have been stopped due to

various reasons. Other versions are popular and active and the most important is that they are consistent in

the order and number of pins, which makes the compatibility of peripheral devices greatly enhanced between

different versions.

Here are some practicality pictures and model diagrams of Raspberry Pi:

Practicality picture of Raspberry Pi 3 Model B+

Model diagram of Raspberry Pi 3 Model B+

http://www.freenove.com/
mailto:support@freenove.com

3 Raspberry Pi

ȿ www.freenove.com

support@freenove.com ȿ

Practicality picture of Raspberry Pi 3 Model B:

Model diagram of Raspberry Pi 3 Model B:

Practicality picture of Raspberry Pi 2 Model B:

Model diagram of Raspberry Pi 2 Model B:

http://www.freenove.com/
mailto:support@freenove.com

Raspberry Pi 4 www.freenove.com ȿ

ȿ support@freenove.com

Practicality picture of Raspberry Pi 1 Model B+:

Model diagram of Raspberry Pi 1 Model B+:

Practicality picture of Raspberry Pi 1 Model A+:

Model diagram of Raspberry Pi 1 Model A+:

http://www.freenove.com/
mailto:support@freenove.com

5 Raspberry Pi

ȿ www.freenove.com

support@freenove.com ȿ

Practicality picture of Raspberry Pi Zero W:

Model diagram of Raspberry Pi Zero W:

Practicality picture of Raspberry Pi Zero

Model diagram of Raspberry Pi Zero

http://www.freenove.com/
mailto:support@freenove.com

Raspberry Pi 6 www.freenove.com ȿ

ȿ support@freenove.com

Hardware interface diagram of RPi 3B+/3B/2B/1B+ is shown below:

Hardware interface diagram of RPi A+ is shown below:

GPIO

Connector

Display

Connector

Power

Connector

HDMI

Connector

Camera

Connector

Audio

Connector

Ethernet

Connector

USB

Connector

GPIO

Connector

Display

Connector

Power

Connector

HDMI

Connector

Camera

Connector

Audio

Connector

USB

Connector

http://www.freenove.com/
mailto:support@freenove.com

7 Raspberry Pi

ȿ www.freenove.com

support@freenove.com ȿ

Hardware interface diagram of RPi Zero/Zero W is shown below:

GPIO

Connector

Power

Connector

HDMI

Connector

Camera

Connector

USB

Connector

http://www.freenove.com/
mailto:support@freenove.com

Install the System 8 www.freenove.com ȿ

ȿ support@freenove.com

Install the System

Firstly, install a system for your RPi.

Component List

Required Components

Any Raspberry Pi

5V/2.5A Power Adapter. Different versions of

Raspberry Pi have different power requirements.

Micro USB Cable x1

Micro SD Card(TF Card)x1, Card Reader x1

http://www.freenove.com/
mailto:support@freenove.com

9 Install the System

ȿ www.freenove.com

support@freenove.com ȿ

Power requirement of different versions of Raspberry Pi is shown in following table:

Product Recommended

PSU current

capacity

Maximum total USB

peripheral current draw

Typical bare- board active

current consumption

Raspberry Pi

Model A

700mA 500mA 200mA

Raspberry Pi

Model B

1.2A 500mA 500mA

Raspberry Pi

Model A+

700mA 500mA 180mA

Raspberry Pi

Model B+

1.8A 600mA/1.2A (switchable) 330mA

Raspberry Pi 2

Model B

1.8A 600mA/1.2A (switchable) 350mA

Raspberry Pi 3

Model B

2.5A 1.2A 400mA

Raspberry Pi 3

Model B+

2.5A

Raspberry Pi

Zero W

1.2A Limited by PSU, board, and

connector ratings only.

150mA

Raspberry Pi

Zero

1.2A Limited by PSU, board, and

connector ratings only

100mA

For more details, please refer to https://www.raspberrypi.org/help/faqs/#powerReqs

In addition, RPi also needs a network cable used to connect it to wide area network.

All of these components are necessary. Among them, the power supply is required at least 5V/2.5A, because

lack of power supply will lead to many abnormal problems, even damage to your RPi. So power supply with

5V/2.5A is highly recommend. SD Card Micro (recommended capacity 16GB or more) is a hard drive for RPi,

which is used to store the system and personal files. In later projects, the components list with a RPi will

contains these required components, using only RPi as a representative rather than presenting details.

http://www.freenove.com/
mailto:support@freenove.com
https://www.raspberrypi.org/help/faqs/#powerReqs

Install the System 10 www.freenove.com ȿ

ȿ support@freenove.com

Optional Components

Under normal circumstances, there are two ways to login to Raspberry Pi: using independent monitor, or

remote desktop to share a monitor with your PC.

Required Accessories for Monitor

If you want to use independent monitor, mouse and keyboard, you also need the following accessories.

1.Display with HDMI interface

2.Mouse and Keyboard with USB interface

As to Pi Zero and Pi Zero W, you also need the following accessories.

1. Mini- HDMI to HDMI converter&wire.

2. Micro- USB to USB- A Receptacles converter&wire (Micro USB OTG wire).

3. USB HUB.

4. USB transferring to Ethernet interface or USB Wi- Fi receiver.

For different Raspberry Pi, the optional items are slightly different. But all of their aims are to convert the

special interface to standard interface of standard Raspberry Pi.

 Pi Zero Pi Zero W Pi A+ Pi B+/2B Pi 3B/3B+

Monitor Yes Yes Yes Yes Yes

Mouse Yes Yes Yes Yes Yes

Keyboard Yes Yes Yes Yes Yes

Mini - HDMI to HDMI

converter&wire
Yes Yes No No No

Micro - USB to USB- A

Receptacles

converter&wire

(Micro USB OTG wire)

Yes Yes No No No

USB HUB Yes Yes Yes No No

USB transferring to

Ethernet interface

select one

from two or

select two

from two

optional
select one

from two or

select two

from two

Internal

Integration Internal

Integration USB Wi- Fi receiver Internal

Integration
optional

http://www.freenove.com/
mailto:support@freenove.com

11 Install the System

ȿ www.freenove.com

support@freenove.com ȿ

Required Accessories for Remote Desktop

If you don't have an independent monitor, or you want to use a remote desktop, first you need to login to

Raspberry Pi through SSH, then open the VNC or RDP service. So you need the following accessories.

 Pi Zero Pi Zero W Pi A+ Pi B+/2B Pi 3B/3B+

Micro - USB to USB- A

Receptacles

converter&wire (Micro

USB OTG wire)

Yes Yes No NO

USB transferring to

Ethernet interface

Yes Yes Yes

http://www.freenove.com/
mailto:support@freenove.com

Install the System 12 www.freenove.com ȿ

ȿ support@freenove.com

Raspbian System

Tool and System image

{ƻŦǘǿŀǊŜ ¢ƻƻƭ

A tool Disk Imager Win32 is required to write system. You can download and install it through visiting the

web site: https://sourceforge.net/projects/win32diskimager/

{ŜƭŜŎǘƛƴƎ {ȅǎǘŜƳ

Visit RPi official website (https://www.RaspberryPi.org/

 supported by RPI is an operating system based on Linux, which contains a number of

contents required for RPi. We recommended RASPBIAN system to beginners. All projects in this tutorial are

operated under the RASPBIAN system.

After download, extract file with suffix (.img). Preparation is ready to start making the system.

http://www.freenove.com/
mailto:support@freenove.com
https://sourceforge.net/projects/win32diskimager/
https://www.raspberrypi.org/

13 Install the System

ȿ www.freenove.com

support@freenove.com ȿ

Write System to Micro SD Card

First, put your Micro SD card into card reader and connect it to USB port of PC. Then open Win32 disk imager,

choose the correct letter of your Micro SD extracted mg and then click the

"Write".

Step1. choose the correct letter Step2.

Step3. Click Write to write the system

http://www.freenove.com/
mailto:support@freenove.com

Install the System 14 www.freenove.com ȿ

ȿ support@freenove.com

Start Raspberry Pi

After the system is written successfully, take out Micro SD Card and put it into the card slot of RPi. Then

connect RPi to screen through the HDMI, to mouse and keyboard through the USB port, to network cable

through the network card interface and to the power supply. Then your RPi starts initially. Later, you need to

enter the user name and password to login. The default user name: pi; password: raspberry. Enter and login.

After login, you can enter the following interface.

Now, you have successfully installed the RASPBIAN operating system for your RPi.

http://www.freenove.com/
mailto:support@freenove.com

15 Install the System

ȿ www.freenove.com

support@freenove.com ȿ

Remote desktop & VNC

If you don't have a spare display, mouse and keyboard for your RPi, you can use a remote desktop to share

a display, keyboard, and mouse with your PC. Below is how to use remote desktop to control RPi under the

Windows operating system.

Under windows, Raspberry Pi can be generally accessed remotely through two applications. The first one is

the windows built- in application remote desktop, which corresponds to the Raspberry Pi xrdp service. The

second one is the free application VNC Viewer, which corresponds to the VNC interface of Raspberry Pi. Each

way has its own advantages. You can choose either one or two.

Windows Raspberry Pi

Remote Desktop Connection Xrdp

VNC Viewer VNC

VNC Viewer can not only run under Windows, but also under system MAC, Linux, IOS, Android and so on.

SSH

Under previous Raspbian system, SSH is opened by default. Under the latest version of Raspbian system, it is

closed by default. So you need to open it first.

Method: after the system is written disk, then the SSH

connection will be opened.

And then, download the tool software Putty. Its official address: http://www.putty.org/

Or download it here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://www.freenove.com/
mailto:support@freenove.com
http://www.putty.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Install the System 16 www.freenove.com ȿ

ȿ support@freenove.com

Then use cable to connect your RPi to the routers of your PC LAN, to ensure your PC and your RPi in the same

LAN. Then put the system TF card prepared before into the slot of the RPi and turn on the power supply

waiting for starting RPi. Later, enter control terminal of the router to inquiry IP .

For example, I have inquired to my RPi IP address, and it

select SSH, and then click "OPEN", as shown below:

There will appear a security warning at first login .

Step1: enter

the IP address

Step2:

Select SSH

Step3:

http://www.freenove.com/
mailto:support@freenove.com

17 Install the System

ȿ www.freenove.com

support@freenove.com ȿ

Then there will be a login interface (RPi default user name: pi; the password: raspberry). When you enter the

password, there will be no display on the screen. This is normal. After the correct output, press nter to

confirm.

Then enter the command line of RPi, which means that you have successfully login to RPi command line

mode.

http://www.freenove.com/
mailto:support@freenove.com

Install the System 18 www.freenove.com ȿ

ȿ support@freenove.com

Remote Desktop Connection & xrdp

If you want to use built- in Remote Desktop Connection under Windows, you need install xrdp service on

Raspberry Pi.

Next, install a xrdp service, an open source remote desktop protocol(rdp) server, for RPi. Type the following

command, then press enter to confirm:

sudo apt- get install xrdp

Later, the installation starts.

After the installation is completed, you can use Windows remote desktop applications to login to your RPi.

http://www.freenove.com/
mailto:support@freenove.com

19 Install the System

ȿ www.freenove.com

support@freenove.com ȿ

Login to Windows remote desktop

Use "WIN+R" or search function, open the remote desktop application "mstsc.exe" under Windows, enter the

IP address Connect .

Later, there will be xrdp login screen. Enter the user name and password of RPi (RPi default user name: pi;

password: raspberry) and click .

http://www.freenove.com/
mailto:support@freenove.com

Install the System 20 www.freenove.com ȿ

ȿ support@freenove.com

Later, you can enter the RPi desktop system.

Here, you have successfully used the remote desktop login to RPi.

http://www.freenove.com/
mailto:support@freenove.com

21 Install the System

ȿ www.freenove.com

support@freenove.com ȿ

VNC Viewer & VNC

Type the following command. And select 5 Interfacing OptionsĄP3 VNC ĄYesĄOKĄFinish. Here Raspberry

Pi may need be restarted, and choose ok. Then open VNC interface.

sudo raspi- config

http://www.freenove.com/
mailto:support@freenove.com

Install the System 22 www.freenove.com ȿ

ȿ support@freenove.com

Then download and install VNC Viewer by click following link:

https://www.realvnc.com/en/connect/download/viewer/windows/

After installation is completed, open VNC Viewer. And click File Ą New Connection. Then the interface is

shown below.

Enter ip address of your Raspberry Pi and fill in a Name. And click OK.

Then on the VNC Viewer panel, double- click new connection you just created, and the following dialog box

pops up.

Enter username: pi and Password: raspberry. And click OK.

http://www.freenove.com/
mailto:support@freenove.com
https://www.realvnc.com/en/connect/download/viewer/windows/

23 Install the System

ȿ www.freenove.com

support@freenove.com ȿ

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer

If you think resolution ratio is not OK, you can set a proper resolution ratio on set interface of Raspberry Pi.

sudo raspi- config

Select 7 Advanced OptionsĄA5 ResolutionĄproper resolution ratio(set by yourself)ĄOK. If it needs restart,

just restart.

http://www.freenove.com/
mailto:support@freenove.com

Install the System 24 www.freenove.com ȿ

ȿ support@freenove.com

In addition, your VNC Viewer window may zoom your Raspberry Pi desktop. You can change it. On your

VNC View control panel, click right key. And select Properties- >Options label- >Scaling. Then set proper

scaling.

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer and operated proper setting.

Then continue to do some preparation work: install a GPIO library wiringPi for your RPi.

Wi- Fi

Raspberry Pi 3B+/ 3B integrates a Wi- Fi adaptor. You can use it to connect to your Wi- Fi. Then you can use

the wireless remote desktop to control your RPi. This will be helpful for the following work. Raspberry Pi of

other models can use wireless remote desktop through accessing an external USB wireless card.

http://www.freenove.com/
mailto:support@freenove.com

25 Chapter 0 Preparation

ȿ www.freenove.com

support@freenove.com ȿ

Chapter 0 Preparation

Chapter 0 ? Because in the program code, all the counts are starting from 0. We choose to follow this

rule (just a joke). In this chapter, we will do some necessary preparation work: start your Pi Raspberry and

install some necessary libraries. If your Raspberry Pi can be started normally and used normally, you can skip

this chapter.

Install WiringPi

WiringPi is a GPIO access library written in C for the BCM2835/BMC2836/ BMC2837 used in the Raspberry Pi.

license and is usable from C, C++ and many other languages with suitable

. (for

more details, please refer to http://wiringpi.com/)

WiringPi Installation Steps

New Raspbian system has integrated this library. So it may prompt that you have installed it.

open the terminal:

Terminal Terminal

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/

Chapter 0 Preparation 26 www.freenove.com ȿ

ȿ support@freenove.com

Follow these steps and commands to complete the installation.

Enter the following command in the terminal to obtain WiringPi using GIT:

sudo apt- get update

sudo apt- get upgrade

git clone git://git.drogon.net/wiringPi

After the cloning operation is completed, go to the wiring folder and update the latest WiringPi.

cd wiringPi

git pull origin

Run the build file to start the installation.

./build

The new build script will compile and install it all for you. It does use the sudo command at one point, so you

may wish to inspect the script before running it.

Run the gpio command to check the installation:

gpio - v

gpio readall

That should give you some confidence that it's working well.

More details refer to here: http://wiringpi.com/do wnload- and- install/

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/download-and-install/

27 Chapter 0 Preparation

ȿ www.freenove.com

support@freenove.com ȿ

Obtain the Project Code

After the above work is done, you can visit our official website (http:// www.freenove.com) or our github

(https://github.com/ freenove) to download the latest project code. We provide both C language and Python

language code for each project in order to apply to user skilled in different languages.

Method for obtaining the code:

In the pi directory of the RPi terminal, enter the following command:

cd ~

git clone https://github.com/freenove/Freenove_RFID_Starter_Kit_for_Raspberry_Pi

After the download is completed, a new folder "Freenove_RFID_Starter_Kit_for_Raspberry_Pi" is generated,

which contains all the tutorials and code.

If you think the folder name is too long. You can rename it by following command.

mv Freenove_RFID_Starter_Kit_for_Raspberry_Pi xxx

Among them, "xxx" represents the new folder name. If you rename the folder, you must change every

Freenove_RFID_Starter_Kit_for_Raspberry_Pi" to new folder name in later commands which contain folder

name.

http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/
https://github.com/freenove

Chapter 0 Preparation 28 www.freenove.com ȿ

ȿ support@freenove.com

Python2 & Python3

If you only use C/C++, you can skip this section.

Now Python code of our kits can run on Python2 and Python3. Python3 is recommend . If you want to use

python2, please make sure your Python version is above 2.7. Python2 and Python3 is not fully compatible.

However, Python2.6 and Python2.7 are transition versions to python3. So you can also use Python2.6 and 2.7

to execute some Python3 code.

You can type python2 and python3 respectively to check if python has been installed. Pree Ctrl- Z to exit.

Type python, and the terminal shows that it links to python2.

If you want to set Python3 as default Python actuators. please follow the steps below.

1. Enter directory /usr/bin

cd /usr/bin

2. Delete the old python link.

sudo rm python

3. Creat new python links to python3.

sudo ln s python3 python

4. Execute python to check whether the link succeeds.

python

http://www.freenove.com/
mailto:support@freenove.com

29 Chapter 0 Preparation

ȿ www.freenove.com

support@freenove.com ȿ

If you want to set python2 as default python actuators, repeat above steps and just change the third command

to the following.

sudo ln s python2 python

We will execute a same python file Hello.py with Python2 and Python3.

First, use Python2 to execute the code.

1. Use cd command to enter 00.0.0_Hello directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/00.0.0_Hello

2. Use python2 command to execute python code Hello.py.

python2 Hello.py

Use Python3 to execute the code under same directory.

3. Use python3 command to execute python code Hello.py.

python3 Hello.py

As you can see, we get same results.

Because the code for our kit supports Python2 and Python3. We just say python later, not specific Python2 or

Python3. You can shoose python version according to your situation.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 0 Preparation 30 www.freenove.com ȿ

ȿ support@freenove.com

Code Editor

vi, nano, Geany

Here we will introduce three kinds of code editor: vi, nano and Geany. Among them, nano and vi are used to

edit files directly in the terminal, and Geany is an independent editing software. We will use the three editors

to open an example code "Hello.c" respectively. First we will show how use vi and nano editor:

First, use cd command to enter the sample code folder.

cd ~

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/00.0.0_Hello

Use the vi editor to open the file "Hello.c", then press ": q" nter exit.

vi Hello.c

As is shown below:

Use the nano editor to open the file "Hello.c", then press " Ctrl+X " to exit.

nano Hello.c

http://www.freenove.com/
mailto:support@freenove.com

31 Chapter 0 Preparation

ȿ www.freenove.com

support@freenove.com ȿ

As is shown below

Use the following command to compile the code to generate the executable file Hello .

gcc Hello.c o Hello

Use the following command to run the executable file Hello .

sudo ./Hello

After the execution, "Hello, World!" is printed out in terminal.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 0 Preparation 32 www.freenove.com ȿ

ȿ support@freenove.com

Next, learn to use the Geany editor. Use the following command to open the Geany in the sample file

"Hello.c" file directory path.

geany Hello.c

Or find and open Geany directly in the desktop main menu, and then click File- >Open to open the "Hello.c",

Or drag "Hello.c" to Geany directly.

http://www.freenove.com/
mailto:support@freenove.com

33 Chapter 0 Preparation

ȿ www.freenove.com

support@freenove.com ȿ

Generates an executable file by clicking menu bar Build- >Build, then execute the generated file by clicking

menu bar Build- >Execute.

After the execution, there will be a terminal printing out the characters s shown below:

http://www.freenove.com/
mailto:support@freenove.com

Chapter 0 Preparation 34 www.freenove.com ȿ

ȿ support@freenove.com

You can click Build- >Set Build Commands to set compiler commands. In later projects, we will use various

compiler command options. If you choose to use Geany, you will need change the compiler command here.

As is shown below:

Summary

Here we have introduced three code editors. There also many other good code editors, and you can choose

any one you like. In later projects, about the entry path and the compiler execute commands, we will

operate the contents in the terminal as examples. We t emphasize the code editing process, but will

explain the contents of the code in details.

http://www.freenove.com/
mailto:support@freenove.com

35 Chapter 0 Preparation

ȿ www.freenove.com

support@freenove.com ȿ

GPIO

GPIO: General purpose input/output. We will introduce the specific future of the pins on the Raspberry Pi and

what you can do with them. You can use them for all sorts of purposes. Most of them can be used as either

inputs or outputs, depending on your program.

When programming the GPIO pins there are 3 different ways to refer to them: GPIO numbering, physical

numbering, WiringPi GPIO Numbering.

BCM GPIO Numbering

Raspberry Pi CPU use BCM2835/BCM2836/BCM2837of Broadcom. GPIO pin number is set by chip

manufacturer. These are the GPIO pins as that computer recognizes. The numbers don't make any sense to

humans. They jump all over the place, so there is no easy way to remember them. You will need a printed

reference or a reference board that fits over the pins.

Each pin is defined as below:

For more details about pin definition of GPIO, please refer to http://pinout.xyz/

http://www.freenove.com/
mailto:support@freenove.com
http://pinout.xyz/

Chapter 0 Preparation 36 www.freenove.com ȿ

ȿ support@freenove.com

PHYSICAL Numbering

Another way to refer to the pins is by simply counting across and down from pin 1 at the top left (nearest to

the SD card). This is 'physical numbering', as shown below:

http://www.freenove.com/
mailto:support@freenove.com

37 Chapter 0 Preparation

ȿ www.freenove.com

support@freenove.com ȿ

WiringPi GPIO Numbering

Different from the previous mentioned two kinds of GPIO serial numbers, RPi GPIO serial number of the

WiringPi was renumbered. Here we have three kinds of GPIO number mode: based on the number of BCM

chip, based on the physical sequence number and based on wiringPi. The correspondence between these

three GPIO numbers is shown below:

(For more details, please refer to https://projects.drogon.net/raspberry- pi/wiringpi/pins/)

http://www.freenove.com/
mailto:support@freenove.com
https://projects.drogon.net/raspberry-pi/wiringpi/pins/

Chapter 0 Preparation 38 www.freenove.com ȿ

ȿ support@freenove.com

You can also use the following command to view their correspondence.

gpio readall

For more details about wiringPi, please refer to http://wiringpi.com/ .

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/

39 Chapter 0 Preparation

ȿ www.freenove.com

support@freenove.com ȿ

GPIO Extension Board

When we use RPi to do the project, we had better use GPIO, which is more convenient to extend all IO ports

of RPi to the bread board directly. The GPIO sequence on Extension Board is identical to the GPIO sequence

of RPi. Since the GPIO of different versions of RPi is different, the corresponding extensions board are also

different. For example, a GPIO extensions board with 40 pins is connected to RPi as follows:

Practicality picture of connection:

http://www.freenove.com/
mailto:support@freenove.com

Chapter 0 Preparation 40 www.freenove.com ȿ

ȿ support@freenove.com

GPIO Extension Board and its schematic are shown below:

GPIO Extension Board

Definition of pins

Breadboard Power Module

Breadboard Power Module is an independent board, which can provide independent 5V or 3.3V power for

bread board when used to build the circuit, and it can avoid excessive load power damaging RPi power. The

schematic diagram of the Breadboard Power Module is shown below:

Power Jack

Power Switch

Output voltage selection

Output port for power

Output voltage selection

Output port for power

USB Output Port

Power Light

http://www.freenove.com/
mailto:support@freenove.com

41 Chapter 0 Preparation

ȿ www.freenove.com

support@freenove.com ȿ

The connection between Breadboard Power Module and Breadboard is shown below:

Next

Here, all preliminary preparations have been completed. Next, we will combine the RPi and electronic

components to do a series of projects from easy to difficult and focus on explaining the relevant knowledge

of electronic circuit.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 1 LED 42 www.freenove.com ȿ

ȿ support@freenove.com

Chapter 1 LED

This chapter is the starting point of the journey to explore RPi electronic projects. start with simple Blink .

Project 1.1 Blink

In this RPi to control LED blinking.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

http://www.freenove.com/
mailto:support@freenove.com

43 Chapter 1 LED

ȿ www.freenove.com

support@freenove.com ȿ

LED x1

Resistor

Jumper

In the components list, 3B GPIO, Extension Shield Raspberry and Breadboard are necessary for each project.

They will be listed only in text form later.

Component knowledge

[95

LED is a kind of diode. LED will shine only if the long pin of LED is connected to the positive electrode and the

short pin is connected to negative electrode.

This is also the features of the common diode. Diode works only if the voltage of its positive electrode is

higher than its negative electrode.

The LED can not be directly connected to power supply, which can damage component. A resistor with certain

resistance must be connected in series in the circuit of LED.

wŜǎƛǎǘƻǊ

The unit of resistance(R) is ohm(,

Resistor is an electrical component that limits or regulates the flow of current in an electronic circuit.

The left is the appearance of resistor, and the right is the symbol of resistor represented in circuit.

Color rings attached to the resistor is used to indicate its resistance. For more details of resistor color code,

please refer to the appendix of this tutorial.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 1 LED 44 www.freenove.com ȿ

ȿ support@freenove.com

With the same voltage there will be less current with more resistance. And the links among current, voltage

and resistance can be expressed by the formula below: I=U/R.

In the following diagram, the current through R1 is:

Do not connect the two poles of power supply with low resistance, which will make the current too high to

damage electronic components.

http://www.freenove.com/
mailto:support@freenove.com

45 Chapter 1 LED

ȿ www.freenove.com

support@freenove.com ȿ

Circuit

Disconnect RPi from GPIO Extension Shield first. Then build the circuit according to the circuit diagram and

the hardware connection diagram. After the circuit is built and confirmed, connect RPi to GPIO Extension

Shield. In addition, short circuit (especially 5V and GND, 3.3V and GND) should be avoid, because short circuit

may cause abnormal circuit work, or even damage to RPi.

Schematic diagram

Hardware connection

Because Numbering of GPIO Extension Shield is the same as RPi GPIO, later Hardware connection diagram

will only show the part of breadboard and GPIO Extension Shield.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 1 LED 46 www.freenove.com ȿ

ȿ support@freenove.com

Code

According to the circuit, when the GPIO17 of RPi output high level, LED is turned on. Conversely, when the

GPIO17 RPi output low level, LED is turned off. Therefore, we can let GPIO17 output high and low level in

cycle to make LED blink. We will use both C code and Python code to achieve the target.

/ /ƻŘŜ мΦмΦм .ƭƛƴƪ

First, observe the project result, and then analyze the code.

1. Use cd command to enter 01.1.1_Blink directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/01.1.1_Blink

2. Use the following comma and generate executable file Blink .

gcc Blink.c o Blink - lwiringPi

3. Then run the generated blink

sudo ./Blink

Now, LED start blink. You can press

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#include <wiringPi.h>

#include <stdio.h>

#define ledPin 0

int main(void)

{

 if (wiringPiSetup () == - 1){ //when initialize wiring failed, print message to screen

 printf ("setup wiringPi failed !");

 return 1;

 }

 //when initialize wiring successfully, print message to screen

 printf ("wiringPi initialize successfully, GPIO %d(wiringPi pin) \ n", ledPin);

 pinMode(le dPin, OUTPUT);

 while (1){

 digitalWrite (ledPin , HIGH); //led on

 printf ("led on... \ n");

 delay(1000);

 digitalWrite (ledPin , LOW); //led off

 printf ("...led off \ n");

 delay(1000);

 }

 return 0;

}

http://www.freenove.com/
mailto:support@freenove.com

47 Chapter 1 LED

ȿ www.freenove.com

support@freenove.com ȿ

GPIO connected to ledPin in the circuit is GPIO17. And GPIO17 is defined as 0 in the wiringPi numbering. So

ledPin should be defined as 0 pin. You can refer to the corresponding table in Chapter 0.

 #define ledPin 0

In the main function main(), initialize wiringPi first, and then print out the initial results. Once the initialization

fails, exit the program.

 if (wiringPiSetup () == - 1){ //when initialize wiring failed, print message to screen

 printf ("setup wiringPi failed !");

 return 1;

 }

 //when initialize wiring successfully, print message to screen

 printf ("wiringPi initialize successfully, GPIO %d(wiringPi pin) \ n", ledPin);

After the wiringPi is initialized successfully, set the ledPin to output mode. And then enter the while cycle,

which is an endless loop. That is, the program will always be executed in this cycle, unless it is ended outside.

In this cycle, use digitalWrite (ledPin, HIGH) to make ledPin output high level, then LED is turned on. After a

period of time delay, use digitalWrite(ledPin, LOW) to make ledPin output low level, then LED is turned off,

which is followed by a delay. Repeat the cycle, then LED will start blinking.

 pinMode(ledPin , OUTPUT);

 while (1){

 digitalW rite (ledPin , HIGH); //led is turned on

 printf ("led on... \ n");

 delay(1000);

 digitalWrite (ledPin , LOW); //led is turned off

 printf ("...led off \ n");

 delay(1000);

 }

Among them, the configuration function for GPIO is shown below as:

void pinMode(int pin, int mode) ;

This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or GPIO_CLOCK. Note that only

wiringPi pin 1 (BCM_GPIO 18) supports PWM output and only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK

output modes.

This function has no effect when in Sys mode. If you need to change the pin mode, then you can do it with

the gpio program in a script before you start your program

void digitalWrite (int pin, int value) ;

Writes the value HIGH or LOW (1 or 0) to the given pin which must have been previously set as an output.

For more related functions, please refer to http://wiringpi.com/reference/

tȅǘƘƻƴ /ƻŘŜ мΦмΦм .ƭƛƴƪ

Net, we will use Python language to make LED blink.

First, observe the project result, and then analyze the code.

1. Use cd command to enter 01.1.1_Blink directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/01.1.1_Blink

2. Use python command to execute python code blink.py.

python Blink.py

Now, LED start blinking.

The following is the program code:

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/reference/

Chapter 1 LED 48 www.freenove.com ȿ

ȿ support@freenove.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

import RPi. GPIO as GPIO

import time

ledPin = 11 # RPI Board pin1 1

def setup():

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(ledPin , GPIO. OUT) # Set ledPin's mode is output

 GPIO. output (ledPin , GPIO. LOW) # Set ledPin low to off led

 print ('using pin%d' %ledPin)

def loo p():

 while True:

 GPIO. output (ledPin , GPIO. HIGH) # led on

 print ('...led on')

 time. sleep(1)

 GPIO. output (ledPin , GPIO. LOW) # led off

 print ('led off...')

 time. sleep(1)

def destroy ():

 GPIO. output (le dPin, GPIO. LOW) # led off

 GPIO. cleanup() # Release resource

if __name__ == '__main__' : # Program start from here

 setup()

 try :

 loop()

 except KeyboardInterrupt : # When 'Ctrl+C' is pressed, the child progr am destroy()

will be executed.

 destroy ()

In subfunction setup(), GPIO.setmode (GPIO.BOARD) is used to set the serial number for GPIO based on

physical location of the pin. GPIO17 use pin 11 of the board, so define ledPin as 11 and set ledPin to output

mode (output low level).

 ledPin = 11 # RPi Board pin11

def setup():

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(ledPin , GPIO. OUT) # Set ledPin to output mode

 GPIO. output (ledPin , GPIO. LOW) # Set ledPin to low level to turn off led

 print ('using pin%d' %ledPin)

In loop(), there is a while cycle, which is an endless loop. That is, the program will always be executed in this

http://www.freenove.com/
mailto:support@freenove.com

49 Chapter 1 LED

ȿ www.freenove.com

support@freenove.com ȿ

cycle, unless it is ended outside. In this cycle, set ledPin output high level, then LED is turned on. After a period

of time delay, set ledPin output low level, then LED is turned off, which is followed by a delay. Repeat the cycle,

then LED will start blinking.

 def loop():

 while True:

 GPIO. output (ledPin , GPIO. HIGH) # led on

 print ('...led on')

 time. sleep(1)

 GPIO. output (ledPin , GPIO. LOW) # led off

 print ('led off...')

 time. sleep(1)

Finally, when the program is terminated, subfunction will be executed, the LED will be turned off and then the

IO port will be released. If close the program terminal directly, the program will be terminated too, but destroy

() function will not be executed. So, GPIO resources be released, in the warning message may appear

next time you use GPIO. So, it is not a good habit to close the program terminal directly.

 def destroy ():

 GPIO. output (ledPin , GPIO. LOW) # led is turned off

 GPIO. cleanup() # Release resource

About RPi.GPIO

RPi.GPIO

This is a Python module to control the GPIO on a Raspberry Pi. It includes basic output function and input

function of GPIO, and function used to generate PWM.

GPIO. setmode(mode)

Set the mode for pin serial number of GPIO.

mode=GPIO.BOARD, which represents the GPIO pin serial number is based on physical location of RPi.

mode=GPIO.BCM, which represents the pin serial number is based on CPU of BCM chip.

GPIO. setup(pin , mode)

Set pin to input mode or output mode . in for the GPIO pin, mode for INPUT or OUTPUT.

GPIO. output (pin , mode)

Set pin to output mode . in for the GPIO pin, mode for HIGH (high level) or LOW (low level).

For more functions related to RPi.GPIO, please refer to:

https://sourceforge.net/p/raspberry- gpio- python/wiki/Examples/

http://www.freenove.com/
mailto:support@freenove.com
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

Chapter 2 Button & LED 50 www.freenove.com ȿ

ȿ support@freenove.com

Chapter 2 Button & LED

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL.

In last section, the LED module is the output part and RPI is the control part. In practical applications, we not

only just let the LED lights flash, but make the device sense the surrounding environment, receive instructions

and then make the appropriate action such as lights the LED, make a buzzer beep and so on.

Next, we will build a simple control system to control LED through a button.

Project 2.1 Button & LED

In the project, we will control the LED state through a button. When the button is pressed, LED will be turn

on, and when it is released, LED will be turn off.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

LED x1

Resistor 220

x1

Resistor 10k

x2

Push

button x1

Jumper

Component knowledge

tǳǎƘ ōǳǘǘƻƴ

Push button has 4 pins. Two pins on the left is connected, and the right is similar as the left, which is shown

Input:

buttons, switches,

sensors and etc.

Control:

RPI, Arduino,

MCU and etc.

Output:

LED, buzzer,

motor and etc.

http://www.freenove.com/
mailto:support@freenove.com

51 Chapter 2 Button & LED

ȿ www.freenove.com

support@freenove.com ȿ

in the below:

When the push button is pressed, the circuit is turned on.

Circuit

Schematic diagram

Hardware connection

Code

This project is designed for learning how to use button to control LED. We first need to read the state of

http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED 52 www.freenove.com ȿ

ȿ support@freenove.com

button, and then determine whether turn on LED according to the state of the button.

/ /ƻŘŜ нΦмΦм .ǳǘǘƻƴ[95

First, observe the project result, then analyze the code.

1. Use cd command to enter 02.1.1_ButtonLED directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/02.1.1_ButtonLED

2. ButtonLED ButtonLED

gcc ButtonLED.c o ButtonLED - lwiringPi

3. Then run t ButtonLED

sudo ./ButtonLED

Later, the terminal window continues to print out the characters led off . Press the button, then LED is

turned on and then terminal window prints . Release the button, then LED is turned off and

then terminal window prints . You can press "Ctrl+C" to terminate the program.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

#include <wiringPi.h>

#include <s tdio.h>

#define ledPin 0 //define the ledPin

#define buttonPin 1 //define the buttonPin

int main(void)

{

 if (wiringPiSetup () == - 1){ //when initialization for wiring fails , print message to

screen

 printf ("setup wiringPi failed !");

 return 1;

 }

 pinMode(ledPin , OUTPUT);

 pinMode(buttonPin , INPUT);

 pullUpDnControl (buttonPin , PUD_UP); //pull up to high level

 while (1){

 if (digitalRead (buttonPin) == LOW){ //button has pressed down

 digitalWrite (ledPin , HIGH); //led on

 printf ("led on... \ n");

 }

 else { //button has released

 digitalWrite (ledPin , LOW); //led off

 printf ("...led off \ n");

 }

 }

 return 0;

}

http://www.freenove.com/
mailto:support@freenove.com

53 Chapter 2 Button & LED

ȿ www.freenove.com

support@freenove.com ȿ

In the circuit connection, LED and Button are connected with GPIO17 and GPIO18 respectively, which

correspond to 0 and 1 respectively in wiringPI. So define ledPin and buttonPin as 0 and 1 respectively.

 #define ledPin 0 //define the ledPin

#define buttonPin 1 //define the buttonPin

In the while cycle of main function, use digitalRead(buttonPin) to determine the state of Button. When the

button is pressed, the function returns low level, the if is true, and then turn on LED. Or, turn off

LED.

 if (digitalRead (buttonPin) == LOW){ //button has pressed down

 digitalWrite (ledPin , HIGH); //led on

 printf ("led on... \ n");

 }

 else { //button has released

 digitalWrite (ledPin , LOW); //led off

 printf ("...led off \ n");

 }

About digitalRead():

int digitalRead (int pin) ;

This function returns the value read at the given pin. It will be HIGH or LOW (1 or 0) depending on the

logic level at the pin.

The code of Python language is shown below.

tȅǘƘƻƴ /ƻŘŜ нΦмΦм .ǳǘǘƻƴ[95

First, observe the project result, then analyze the code.

1. Use cd command to enter 01.1.1_btnLED directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/02.1.1_ButtonLED

2. Use Python command to execute btnLED.py.

python ButtonLED.py

Later, the terminal window continue to print out the then LED is turned

on, then LED is turned off and then

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

import RPi. GPIO as GPIO

ledPin = 11 # define the ledPin

buttonPin = 12 # define the buttonPin

def setup():

 print ('Program is starting...')

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(ledPin , GPIO. OUT) # Set ledPin's mode is output

 GPIO. setup(buttonPin , GPIO. IN, pull_up_down=GPIO. PUD_UP) # Set buttonPin's mode is

input, and pull up to high level(3.3V)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED 54 www.freenove.com ȿ

ȿ support@freenove.com

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

def loop():

 while True:

 if GPIO. input (buttonPin)==GPIO. LOW:

 GPIO. output (ledPin , GPIO. HIGH)

 print ('led on ...')

 else :

 GPIO. output (ledPin , GPIO. LOW)

 print ('led off ...')

def destroy ():

 GPIO. output (ledPin , GPIO. LOW) # led off

 GPIO. cleanup() # Release resource

if __name__ == '__main__' : # Program start from here

 setup()

 try :

 loop()

 except KeyboardInterrupt : # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy ()

In subfunction setup (), GPIO.setmode (GPIO.BOARD) is used to set the serial number of the GPIO, which is

based on physical location of the pin. So, GPIO17 and GPIO18 correspond to pin11 and pin12 respectively in

the circuit. Then set ledPin to output mode, buttonPin to input mode with a pull resistor.

 ledPin = 11 # define the ledPin

buttonPin = 12 # define the buttonPin

def setup():

 print ('Program is starting...')

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(ledPin , GPIO. OUT) # Set ledPin's mode is output

 GPIO. setup(buttonPin , GPIO. IN, pull_up_down=GPIO. PUD_UP) # Set buttonPin's mode is

input, and pull up to high level(3.3V)

In the loop function while dead circulation, continue to judge whether the key is pressed. When the button is

pressed, the GPIO.input(buttonPin) will return low level, then the result of if is true, ledPin outputs high level,

LED is turned on. Or, LED will be turned off.

 def loop():

 while True:

 if GPIO. input (buttonPin)==GPIO. LOW:

 GPIO. output (ledPin , GPIO. HIGH)

 print ('led on ...')

 else :

 GPIO. output (ledPin , GPIO. LOW)

 print ('led off ...')

http://www.freenove.com/
mailto:support@freenove.com

55 Chapter 2 Button & LED

ȿ www.freenove.com

support@freenove.com ȿ

Execute the function destroy (), close the program and release the resource.

About function GPIO.input ():

GPIO.input()

This function returns the value read at the given pin. It will be HIGH or LOW (1 or 0) depending on the

logic level at the pin.

Project 2.2 MINI table lamp

We will also use a button, LED and UNO to make a MINI table lamp. But the function is different: Press the

button, the LED will be turned on, and press the button again, the LED goes out.

First, let us learn some knowledge about the button.

Debounce for Push Button

When a Push Button is pressed, it will not change from one state to another state immediately. Due to

mechanical vibration, there will be a continuous buffeting before it becomes another state. And the releasing-

situation is similar with that process.

Therefore, if we directly detect the state of Push Button, there may be multiple pressing and releasing action

in one pressing process. The buffeting will mislead the high- speed operation of the microcontroller to cause

a lot of false judgments. So we need to eliminate the impact of buffeting. Our solution is: to judge the state

of the button several times. Only when the button state is stable after a period of time, can it indicate that the

button is pressed down.

This project needs the same components and circuits with the last section.

Ideal state

Virtual state

press stable release stable

http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED 56 www.freenove.com ȿ

ȿ support@freenove.com

Code

In the project, we still detect the state of Button to control LED. Here we need to define a variable to save the

state of LED. And when the button is pressed once, the state of LED will be changed once. This has achieved

the function of the table lamp.

/ /ƻŘŜ нΦнΦм ¢ŀōƭŜƭŀƳǇ

First observe the project result, and then analyze the code.

1. Use cd command to enter 02.2.1_Tablelamp directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/02.1.1_Tablelamp

2. Use following command to compile Tablelamp.c and generate executable file Tablelamp .

gcc Tablelamp.c o Tablelamp- lwiringPi

3. Tablelamp. Then run the generated file

sudo ./Tablelamp

When the program is executed, press the Button once, then LED is turned on. Press the Button another time,

then LED is turned off.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#include <wiringPi.h>

#include <stdio.h>

#define ledPin 0 //define the ledPin

#define buttonPin 1 //define the buttonPin

int ledState =LOW; //store the State of led

int buttonState =HIGH; //store the State of button

int lastbuttonState =HIGH;//store the lastState of button

long lastChangeTime; //store the chan ge time of button state

long captureTime=50; //set the button state stable time

int reading ;

int main(void)

{

 if (wiringPiSetup () == - 1){ //when initialize wiring failed,print message to screen

 printf ("setup wiringPi failed !");

 retur n 1;

 }

 printf ("Program is starting... \ n");

 pinMode(ledPin , OUTPUT);

 pinMode(buttonPin , INPUT);

 pullUpDnControl (buttonPin , PUD_UP); //pull up to high level

 while (1){

 reading = digitalRead (buttonPin); //read the current st ate of button

 if (reading != lastbuttonState){ //if the button state has changed ,record the

time point

 lastChangeTime = millis ();

 }

http://www.freenove.com/
mailto:support@freenove.com

57 Chapter 2 Button & LED

ȿ www.freenove.com

support@freenove.com ȿ

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

 //if changing - state of the button last beyond the time we set, we considered that

 //the current button state is an effective change rather than a buffeting

 if (millis () - lastChangeTime > captureTime){

 //if button state is changed ,update the data.

 if (reading != buttonState){

 buttonSta te = reading ;

 //if the state is low ,the action is pressing

 if (buttonState == LOW){

 printf ("Button is pressed! \ n");

 ledState = ! ledState ;

 if (ledState){

 printf ("turn on LED ... \ n");

 }

 else {

 printf ("turn off LED ... \ n");

 }

 }

 //if the state is high ,the action is releasing

 else {

 printf ("Button is released! \ n");

 }

 }

 }

 digitalWrite (ledPin , ledState);

 lastbuttonState = reading ;

 }

 return 0;

}

This code focuses on eliminating the buffeting of button. We define several variables to save the state of LED

and button. Then read the button state in while () constantly, and determine whether the state has changed.

If it is, record this time point.

 reading = digitalRead (buttonPin); //read the curre nt state of button

 if (reading != lastbuttonState){

lastChangeTime = millis ();

 }

millis()

Returns the number of milliseconds since the Arduino board began running the current program.

Then according to just recorded time point, judge the duration of the button state change. If the duration

exceeds captureTime (buffeting time) we set, it indicates that the state of the button has changed. During that

time, the while () is still detecting the state of the button, so if there is a change, the time point of change will

be updated. Then duration will be judged again until the duration of there is a stable state exceeds the time

we set.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED 58 www.freenove.com ȿ

ȿ support@freenove.com

 if (millis () - lastChangeTime > captureTime){

 //if button state is changed ,update the data.

 if (reading != buttonState){

 buttonState = reading ;

Finally, judge the state of Button. And if it is low level, the changing state indicates that the button is pressed,

if the state is high level, then the button is released. Here, we change the status of the LED variable, and then

update the state of LED.

 if (buttonState == LOW){

 printf ("Button is pressed! \ n");

 ledState = ! ledState ;

 if (ledState){

 printf ("turn on LED ... \ n");

 }

 else {

 printf ("turn off LED ... \ n");

 }

 }

 //if the state is high ,the action is releasing

 else {

 printf ("Button is released! \ n");

 }

tȅǘƘƻƴ /ƻŘŜ нΦнΦм ¢ŀōƭŜƭŀƳǇ

First observe the project result, and then analyze the code.

1. Use cd command to enter 02.2.1_Tablelamp directory of Python code

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/02.2.1_Tablelamp

2. Use python command to execute python code

python Tablelamp.py

When the program is executed, press the Button once, then LED is turned on. Press the Button another time,

then LED is turned off.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

import RPi. GPIO as GPIO

ledPin = 11 # define the ledPin

buttonPin = 12 # define the buttonPin

ledState = False

def setup():

 print ('Program is starting...')

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(ledPin , GPIO. OUT) # Set ledPin's mode is output

 GPIO. setup(buttonPin , GPIO. IN, pull_up_down=GPIO. PUD_UP) # Set buttonPin's mode is

input, and pull up to high

def buttonEvent (channel): #When the button is pressed, this function will be executed

http://www.freenove.com/
mailto:support@freenove.com

59 Chapter 2 Button & LED

ȿ www.freenove.com

support@freenove.com ȿ

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

 global ledState

 print ('buttonEvent GPIO%d' %channel)

 ledState = not ledState

 if ledState :

 print ('Turn on LED ... ')

 else :

 print ('Turn off LED ... ')

 GPIO. output (ledPin , ledState)

def loop():

 #Button detect

 GPIO. add_event_detect(buttonPin , GPIO. FALLING, callback = buttonEvent , bouncetime=300)

 while True:

 pass

def destroy ():

 GPIO. output (ledPin , GPIO. LOW) # led off

 GPIO. cleanup() # Release resource

if __name__ == '__main__' : # Program start from here

 setup()

 try :

 loop()

 except KeyboardInterrupt : # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy ()

RPi.GPIO provides us with a simple and effective function to eliminate the jitter, that is

GPIO.add_event_detect(). It uses callback function. Once it detect that the buttonPin has a specified action

FALLING, execute the specified function buttonEvent(). In the function buttonEvent, each time the ledState is

reversed, the state of the LED will be updated.

 def buttonEvent (channel):

 global ledState

 print 'buttonEvent GPIO%d'%channel

 ledState = not ledState

 if ledState :

 print ('Turn on LED ... ')

 else :

 print ('Turn off LED ... ')

 GPIO. output (ledPin , ledState)

def loop():

 #Button detect

http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED 60 www.freenove.com ȿ

ȿ support@freenove.com

 GPIO. add_event_detect (buttonPin , GPIO. FALLING, callback = buttonEvent , bouncetime=300)

 while True:

 pass

Of course, you can also use the same programming idea of C code above to achieve this target.

GPIO.add_event_detect(channel, GPIO.RISING, callback=my_callback, bouncetime=200)

This is an event detection function. The first parameter specifies the IO port to be detected. The second

parameter specifies the action to be detected. The third parameter specified a function name, the function

will be executed when the specified action is detected. And the fourth parameter is used to set the jitter

time.

http://www.freenove.com/
mailto:support@freenove.com

61 Chapter 3 LEDBar Graph

ȿ www.freenove.com

support@freenove.com ȿ

Chapter 3 LEDBar Graph

We have learned how to control a LED blinking, and next we will learn how to control a number of LED.

Project 3.1 Flowing Water Light

In this project, we use a number of LED to make a flowing water light.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

LED bar graph x1

Resistor x10

Jumper

Component knowledge

Let us learn about the basic features of components to use them better.

[95 ōŀǊ ƎǊŀǇƘ

LED bar graph is a component Integration consist of 10 LEDs. There are two rows of pins at its bottom.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 3 LEDBar Graph 62 www.freenove.com ȿ

ȿ support@freenove.com

Circuit

The network label is used in the circuit diagram below, and the pins with the same network label are connected

together.

Schematic diagram

Hardware connection

In this circuit, the cathode of LED is connected to GPIO, which is the different from the front circuit. So, LED

will be turned on when GPIO output low level in the program.

http://www.freenove.com/
mailto:support@freenove.com

63 Chapter 3 LEDBar Graph

ȿ www.freenove.com

support@freenove.com ȿ

Code

This project is designed to make a water lamp. First turn on the first LED, then turn off it. Then turn on the

second LED, and then turn off it....... Until the last LED is turned on, then is turned off. And repeats the process

to achieve the effect of flowing water light.

/ /ƻŘŜ оΦмΦм [ƛƎƘǘ²ŀǘŜǊ

First observe the project result, and then analyze the code.

1. Use cd command to enter 03.1.1_LightWater directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/03.1.1_LightWater

2. Use following command to compile LightWater.c LightWater

gcc LightWater.c o LightWater- lwiringPi

3. Then run the generated

sudo ./LightWater

After the program is executed, you will see that LEDBar Graph starts with the flowing water way to be turned

on from left to right, and then from right to left.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#include <wiringPi.h>

#include <stdio.h>

#define leds 10

int pins [leds] = { 0, 1, 2, 3, 4, 5, 6, 8, 9, 10};

void led_on(int n)//make led_n on

{

 digitalWrite (n, LOW);

}

void led_off (int n)//make l ed_n off

{

 digitalWrite (n, HIGH);

}

int main(void)

{

 int i ;

 printf ("Program is starting ... \ n");

 if (wiringPiSetup () == - 1){ //when initialize wiring failed,print message to screen

 printf ("setup wiringPi failed !");

 return 1;

 }

 for (i =0; i <leds ; i ++){ //make leds pins' mode is output

 pinMode(pins [i], OUTPUT);

 }

 while (1){

 for (i =0; i <leds ; i ++){ //make led on from left to right

http://www.freenove.com/
mailto:support@freenove.com

Chapter 3 LEDBar Graph 64 www.freenove.com ȿ

ȿ support@freenove.com

28

29

30

31

32

33

34

35

36

37

38

39

 led_on(pins [i]);

 delay(100);

 led_off (pins [i]);

 }

 for (i =leds - 1; i >- 1; i --){ //make led on from right to left

 led_on(pins [i]);

 delay(100);

 led_off (pins [i]);

 }

 }

 return 0;

}

In the program, configure the GPIO0- GPIO9 to output mode. Then, in the cycle of main

function, use two for cycle to realize flowing water light from left to right and from right to left.

 while (1){

 for (i =0; i <leds ; i ++){ //make led on from left to right

 led_on(pins [i]);

 delay(100);

 led_off (pins [i]);

 }

 for (i =leds - 1; i >- 1; i --){ //make led on from right to left

 led_on(pins [i]);

 delay(100);

 led_off (pins [i]);

 }

 }

tȅǘƘƻƴ /ƻŘŜ оΦмΦм [ƛƎƘǘ²ŀǘŜǊ

First observe the project result, and then analyze the code.

1. Use cd command to enter 03.1.1_LightWater directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/03.1.1_LightWater

2. Use Python command to execute Python code

python LightWater.py

After the program is executed, you will see that LEDBar Graph starts with the flowing water way to be turned

on from left to right, and then from right to left.

The following is the program code:

1

2

3

4

5

6

7

8

import RPi. GPIO as GPIO

import time

ledPins = [11, 12, 13, 15, 16, 18, 22, 3, 5, 24]

def setup():

 print ('Program is starting...')

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

http://www.freenove.com/
mailto:support@freenove.com

65 Chapter 3 LEDBar Graph

ȿ www.freenove.com

support@freenove.com ȿ

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 for pin in ledPins :

 GPIO. setup(pin , GPIO. OUT) # Set all ledPins' mode is output

 GPIO. output (pin , GPIO. HIGH) # Set all ledPins to high(+3.3V) to off led

def loop():

 while True:

 for pin in ledPins : #make led on from left to right

 GPIO. output (pin , GPIO. LOW)

 time. sleep(0.1)

 GPIO. output (pin , GPIO. HIGH)

 for pin in ledPins [10: 0: - 1]: #make led on from right to left

 GPIO. output (pin , GPIO. LOW)

 time. sleep(0.1)

 GPIO. output (pin , GPIO. HIGH)

def destroy ():

 for pin in ledPins :

 GPIO. output (pin , GPIO. HIGH) # turn off all leds

 GPIO. cleanup() # Release resource

if __name__ == '__main__' : # Program start from here

 setup()

 try :

 loop()

 except KeyboardInterrupt : # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy ()

In the program, first define 10 pins connected to LED, and set them to output mode in subfunction setup().

Then in the loop() function, use two for cycles to realize flowing water light from right to left and from l eft

to right . Among them, ledPins[10:0:- 1] is used to traverse elements of ledPins in reverse order.

 def loop():

 while True:

 for pin in ledPins : #make led on from left to right

 GPIO. output (pin , GPIO. LOW)

 time. sleep(0.1)

 GPIO. output (pin , GPIO. HIGH)

 for pin in ledPins [10: 0: - 1]: #make led on from right to left

 GPIO. output (pin , GPIO. LOW)

 time. sleep(0.1)

 GPIO. output (pin , GPIO. HIGH)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 4 Analog & PWM 66 www.freenove.com ȿ

ȿ support@freenove.com

Chapter 4 Analog & PWM

In previous study, we have known that one button has two states: pressed and released, and LED has light-

on/off state, then how to enter a middle state? How to output an intermediate state to let LED "semi bright"?

That's what we're going to learn.

First, let a LED.

Project 4.1 Breathing LED

Breathing light, that is, LED is turned from off to on gradually, gradually from on to off, just like "breathing".

So, how to control the brightness of a LED? We will use PWM to achieve this target.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

LED x1

Resistor x1

Jumper

Circuit knowledge

!ƴŀƭƻƎ ϧ 5ƛƎƛǘŀƭ

The analog signal is a continuous signal in time and value. On the contrary, digital signal is a discrete signal

in time and value. Most signals in life are analog signals, for example, the temperature in one day is

continuously changing, and will not appear a sudden change directly from 0 to 10 , while the digital signal

is a jump change, which can be directly from 1 to 0.

Their difference can be illustrated by the following figure.

In practical application, we often use binary signal as digital signal, that is 0 and 1. The binary signal only has

http://www.freenove.com/
mailto:support@freenove.com

67 Chapter 4 Analog & PWM

ȿ www.freenove.com

support@freenove.com ȿ

two forms (0 or 1), so it has strong stability. And digital signal and analog signal can be converted to each

other.

t²a

PWM, namely Width Modulation Pulse, is a very effective technique for using digital signals to control analog

circuits. The common processors can not directly output analog signals. PWM technology make it very

convenient to achieve this purpose.

PWM technology uses digital pins to send certain frequency of square waves, that is, the output of high level

and low level that last for a while alternately. The total time for each set of high level and low level is generally

fixed, which is called period (the reciprocal of the period is frequency). The time of high level outputting is

generally called pulse width, and the percentage of pulse width is called duty cycle.

The longer the output of high level last, the larger the duty cycle and the larger the corresponding voltage in

analog signal will be. The following figures show how the analog signals voltage vary between 0V- 5V (high

level is 5V) corresponding to the pulse width 0%- 100%:

The larger PWM duty cycle is, the lager the output power will be. So we can use PWM to control the brightness

of LED, the speed of DC motor and so on.

It is evident from the above that PWM is not real analog, and the effective value of the voltage is equivalent

to the corresponding analog. so, we can control the output power of the LED and other output modules to

achieve different effects.

In RPi, only GPIO18 has the ability to output PWM with a 10- bit accuracy, that is, 100% of the pulse width can

be divided into 2
10
=1024 equal parts.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 4 Analog & PWM 68 www.freenove.com ȿ

ȿ support@freenove.com

Circuit

Schematic diagram

Hardware connection

Code

This project is designed to make PWM output GPIO18 with pulse width increasing from 0% to 100%, and then

reducing from 100% to 0% gradually.

/ /ƻŘŜ пΦмΦм .ǊŜŀǘƘƛƴƎ[95

First observe the project result, and then analyze the code.

1. Use cd command to enter 04.1.1_BreathingLED directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/04.1.1_BreathingLED

2. Use following command to compile BreathingLED BreathingLED

gcc BreathingLED.c o BreathingLED - lwiringPi

3. Then run the generated BreathingLED

sudo ./ BreathingLED

After the program is executed, you'll see that LED is turned from on to off and then from off to on gradually

like breathing.

The following is the program code:

1

2

3

4

5

6

7

8

#include <wiringPi.h>

#include <stdio.h>

#define ledPin 1 //Only GPIO18 can output PWM

int main(void)

{

 int i ;

 if (wiringPiSetup () == - 1){ //when initialize wiring failed,print message to screen

 printf ("setup wiringPi failed !");

http://www.freenove.com/
mailto:support@freenove.com

69 Chapter 4 Analog & PWM

ȿ www.freenove.com

support@freenove.com ȿ

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

 return 1;

 }

 pinMode(ledPin , PWM_OUTPUT);//p wm output mode

 while (1){

 for (i =0; i <1024; i ++){

 pwmWrite(ledPin , i);

 delay(2);

 }

 delay(300);

 for (i =1023; i >=0; i --){

 pwmWrite(ledPin , i);

 delay(2);

 }

 delay(300);

 }

 return 0;

}

Since only GPIO18 of RPi has hardware capability to output PWM, the ledPin should be defined as 1 and set

its output mode to PWM_OUTPUT based on the corresponding chart for pins.

 pinMode(ledPin , PWM_OUTPUT);//pwm output mode

There are two for cycles in the next endless while cycle. The first makes the ledPin output PWM from 0% to

100% and the second makes the ledPin output PWM from 100% to 0%.

 whil e(1){

 for (i =0; i <1024; i ++){

 pwmWrite(ledPin , i);

 delay(2);

 }

 delay(300);

 for (i =1023; i >=0; i --){

 pwmWrite(ledPin , i);

 delay(2);

 }

 delay(300);

 }

You can also adjust the rate of the state change of LED by changing the parameters of the delay() function in

the for cycle.

void pwmWrite (int pin, int value) ;

Writes the value to the PWM register for the given pin. The Raspberry Pi has one on- board PWM pin, pin

1 (BCM_GPIO 18, Phys 12) and the range is 0- 1024. .

http://www.freenove.com/
mailto:support@freenove.com

Chapter 4 Analog & PWM 70 www.freenove.com ȿ

ȿ support@freenove.com

tȅǘƘƻƴ /ƻŘŜ пΦмΦм .ǊŜŀǘƘƛƴƎ[95

First observe the project result, and then analyze the code.

1. Use cd command to enter 04.1.1_BreathingLED directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/04.1.1_BreathingLED

2. U BreathingLED

python BreathingLED.py

After the program is executed, you'll see that LED is turned from on to off and then from off to on gradually

like breathing.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

import RPi. GPIO as GPIO

import time

LedPin = 12

def setup():

 global p

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(LedPin, GPIO. OUT) # Set LedPin's mode is output

 GPIO. output (LedPin, GPIO. LOW) # Set LedPin to low

 p = GPIO. PWM(LedPin, 1000) # Set Frequency to 1KHz

 p. start (0) # Duty Cycle = 0

def loop():

 while True:

 for dc in range(0, 101, 1): # Increase duty cycle: 0~100

 p. ChangeDutyCycle(dc) # Change duty cycle

 time. sleep(0.01)

 time. sleep(1)

 for dc in range(100, - 1, - 1): # Decrease duty cycle: 100~0

 p. ChangeDutyCycle(dc)

 time. sleep(0.01)

 time. sleep(1)

def destroy ():

 p. stop()

 GPIO. output (LedPin, GPIO. LOW) # turn off led

 GPIO. cleanup()

if __name__ == '__main__' : # Program start from here

 setup()

 try :

 loop()

 except KeyboardInterrupt : # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy ()

LED is connected to the IO port called GPIO18. And LedPin is defined as 12 and set to output mode according

to the corresponding chart for pins. Then create a PWM instance and set the PWM frequency to 1000HZ, the

initial duty cycle to 0%.

http://www.freenove.com/
mailto:support@freenove.com

71 Chapter 4 Analog & PWM

ȿ www.freenove.com

support@freenove.com ȿ

 LedPin = 12

def setup():

 global p

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(LedPin, GPIO. OUT) # Set LedPin's mode is output

 GPIO. output (LedPin, GPIO. LOW) # Set LedPin to low

 p = GPIO. PWM(LedPin, 1000) # Set Frequency to 1KHz

 p. start (0) # Duty Cycle = 0

 used to realize breathing LED

ledPin output PWM from 0% to 100% and the second makes the ledPin output PWM from 100% to 0%.

 def loop():

 while True:

 for dc in range(0, 101, 1): # Increase duty cycle: 0 ~100

 p. ChangeDutyCycle(dc) # Change duty cycle

 time. sleep(0.01)

 time. sleep(1)

 for dc in range(100, - 1, - 1): # Decrease duty cycle: 100~0

 p. ChangeDutyCycle(dc)

 time. sleep(0.01)

 time. sleep(1)

The related functions of PWM are described as follows:

p = GPIO.PWM(channel, frequency)

To create a PWM instance:

p.start(dc)

To start PWM: where dc is the duty cycle (0.0 <= dc <= 100.0)

p.ChangeFrequency(freq)

To change the frequency where freq is the new frequency in Hz

p.ChangeDutyCycle(dc)

To change the duty cycle where 0.0 <= dc <= 100.0

p.stop()

To stop PWM.

For more details about usage method for PWM of RPi.GPIO, please refer to:

https://sourceforge.net/p/raspberry- gpio- python/wiki/PWM/

http://www.freenove.com/
mailto:support@freenove.com
https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/

Chapter 5 RGBLED 72 www.freenove.com ȿ

ȿ support@freenove.com

Chapter 5 RGBLED

In this chapter, we will learn how to control a RGBLED.

RGB LED has integrated 3 LEDs that can respectively emit red, green and blue light. And it has 4 pins. The

long pin (1) is the common port, that is, 3 LED 's positive or negative port. The RGB LED with common positive

port and its symbol are shown below. We can make RGB LED emit various colors of light by controlling these

3 LEDs to emit light with different brightness,

Red, green, and blue light are called 3 primary colors. When you combine these three primary- color light with

different brightness, it can produce almost all kinds of visible lights. Computer screens, single pixel of cell

phone screen, neon, and etc. are working under this principle.

RGB

If we use three 8 bit PWM to control the RGBLED, in theory, we can create 2
8
*2

8
*2

8
=16777216 (16 million)

color through different combinations.

Next, we will use RGBLED to make a colorful LED.

Project 5.1 Colorful LED

In this project, we will make a colorful LED. And we can control RGBLED to switch different colors automatically.

http://www.freenove.com/
mailto:support@freenove.com

73 Chapter 5 RGBLED

ȿ www.freenove.com

support@freenove.com ȿ

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

RGBLED x1

Resistor x3

Jumper

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 5 RGBLED 74 www.freenove.com ȿ

ȿ support@freenove.com

Code

Since this project requires 3 PWM, but in RPi, only one GPIO has the hardware capability to output PWM, we

need to use the software to make the ordinary GPIO output PWM.

/ /ƻŘŜ рΦмΦм /ƻƭƻǊŦǳƭ[95

First observe the project result, and then analyze the code.

1. Use cd command to enter 05.1.1_ColorfulLED directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/05.1.1_ColorfulLED

2. Use following command to compile ColorfulLED ColorfulLED Note: in

this project, the software PWM uses a multi- threading mechanism. S - lpthread option need to be add

the compiler.

gcc ColorfulLED.c o ColorfulLED - lwiringPi lpthread

3. And then run the generated by ColorfulLED.

sudo ./ColorfulLED

After the program is executed, you will see that the RGBLED shows light of different color randomly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#include <wiringPi.h>

#include <softPwm.h>

#include <stdio.h>

#define ledPinRed 0

#define ledPinGreen 1

#define ledPinBlue 2

void ledInit (void)

{

 softPwmCreate(ledPinRed, 0, 100);

 softPwmCreate(ledPinGreen, 0, 100);

 softPwmCreate(ledPinBlue , 0, 100);

}

void ledColorSet (int r_val , int g_val , int b_val)

{

 softPwmWrite(ledPinRed, r_val);

 softPwmWrite(ledPinGreen, g_val);

 softPwmWrite(ledPinBlue , b_val);

}

int main(void)

{

 int r , g, b;

 if (wiringPiSetup () == - 1){ //when initialize wiring failed,print message to screen

 printf ("setup wiringPi failed !");

http://www.freenove.com/
mailto:support@freenove.com

75 Chapter 5 RGBLED

ȿ www.freenove.com

support@freenove.com ȿ

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

 return 1;

 }

 printf ("Program is starting ... \ n");

 ledInit ();

 while (1){

 r =random()%100;

 g=random()%100;

 b=random()%100;

 ledColorSet (r , g, b);

 printf ("r=%d, g=%d, b=%d \ n", r , g, b);

 delay(300);

 }

 return 0;

}

First, in subfunction of ledInit(), create the software PWM control pins used to control the R G, RGBLED, B pin

respectively.

 void ledInit (void)

{

 softPwmCreate(ledPinRed, 0, 100);

 softPwmCreate(ledPinGreen, 0, 100);

 softPwmCreate(ledPinBlue , 0, 100);

}

Then create subfunction, and set the PWM of three pins.

 void ledColorSet (i nt r_val , int g_val , int b_val)

{

 softPwmWrite(ledPinRed, r_val);

 softPwmWrite(ledPinGreen, g_val);

 softPwmWrite(ledPinBlue , b_val);

}

Finally, in the while main function, get three random numbers and specify them as the PWM duty

cycle, which will be assigned to the corresponding pins. So RGBLED can switch the color randomly all the time.

 while (1){

 r =random()%100;

 g=random()%100;

 b=random()%100;

 ledColorSet (r , g, b);

 printf ("r=%d, g=%d, b=%d \ n", r , g, b);

 delay(300);

 }

http://www.freenove.com/
mailto:support@freenove.com

Chapter 5 RGBLED 76 www.freenove.com ȿ

ȿ support@freenove.com

The related function of Software PWM can be described as follws:

int softPwmCreate (int pin, int initialValue, int pwmRange) ;

This creates a software controlled PWM pin.

void softPwmWrite (int pin, int va lue) ;

This updates the PWM value on the given pin.

long random() ;

This function will return a random number.

For more details about Software PWM, please refer to: http://wiringpi.co m/reference/software- pwm- library/

tȅǘƘƻƴ /ƻŘŜ рΦмΦм /ƻƭƻǊŦǳƭ[95

First observe the project result, and then analyze the code.

1. Use cd command to enter 05.1.1_ColorfulLED directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/05.1.1_ColorfulLED

2. U ColorfulLED.py.

python ColorfulLED.py

After the program is executed, you will see that the RGBLED shows light of different color randomly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

import RPi. GPIO as GPIO

import time

import random

pins = { 'pin_R' : 11, 'pin_G' : 12, 'pin_B' : 13} # pins is a dict

def setup():

 global p_R, p_G, p_B

 pr int ('Program is starting ... ')

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 for i in pins :

 GPIO. setup(pins [i], GPIO. OUT) # Set pins' mode is output

 GPIO. output (pins [i], GPIO. HIGH) # Set pins to high(+3.3V) to off led

 p_R = GPIO. PWM(pins ['pin_R'], 2000) # set Frequece to 2KHz

 p_G = GPIO. PWM(pins ['pin_G'], 2000)

 p_B = GPIO. PWM(pins ['pin_B'], 2000)

 p_R. start (0) # Initial duty Cycle = 0

 p_G. start (0)

 p_B. start (0)

def setColor (r_val , g_val , b_val):

 p_R. ChangeDutyCycle(r_val) # Change duty cycle

 p_G. ChangeDutyCycle(g_val)

 p_B. ChangeDutyCycle(b_val)

def loop():

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/reference/software-pwm-library/

77 Chapter 5 RGBLED

ȿ www.freenove.com

support@freenove.com ȿ

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 while True :

 r =random. randint (0, 100) #get a random in (0,100)

 g=random. randint (0, 100)

 b=random. randint (0, 100)

 setColor (r , g, b) #set random as a duty cycle value

 print ('r=%d, g=%d, b=%d ' %(r , g, b))

 time. sleep(0.3)

def destroy ():

 p_R. stop()

 p_G. stop()

 p_B. stop()

 GPIO. cleanup()

if __name__ == '__main__' : # Program start from here

 setup()

 try :

 loop()

 except KeyboardInterrupt : # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy ()

In last chapter, we have learned how to use python language to make a pin output PWM. In this project, we

let three pins output PWM, and the usage is exactly the same as last chapter. In the while of loop

function, we first obtain three random numbers, and then specify these three random numbers as the PWM

value of the three pins.o that the RGBLED switching of different colors randomly.

 def loop():

 while True :

 r =random. randint (0, 100)

 g=random. randint (0, 100)

 b=random. randint (0, 100)

 setColor (r , g, b)

 print ('r=%d, g=%d, b=%d ' %(r , g, b))

 time. sleep(0.3)

About function randint():

random.randint(a, b)

The function can returns a random integer within the specified range (a, b).

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 78 www.freenove.com ȿ

ȿ support@freenove.com

Chapter 6 Buzzer

In this chapter, we will learn a component that can sound, buzzer.

Project 6.1 Doorbell

We will make this kind of doorbell: when the button is pressed, the buzzer sounds; and when the button is

released, the buzzer stops sounding.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

NPN transistorx1

(S8050)

Active buzzer x1

Push button x1

Resistor 1k x1

Resistor 10k x2

http://www.freenove.com/
mailto:support@freenove.com

79 Chapter 6 Buzzer

ȿ www.freenove.com

support@freenove.com ȿ

Component knowledge

.ǳȊȊŜǊ

Buzzer is a sounding component, which is widely used in electronic devices such as calculator, electronic

warning clock, alarm. Buzzer has active and passive type. Active buzzer has oscillator inside, and it will sound

as long as it is supplied with power. Passive buzzer requires external oscillator signal (generally use PWM with

different frequency) to make a sound.

Active buzzer Passive buzzer

Active buzzer is easy to use. Generally, it can only make a specific frequency of sound. Passive buzzer

requires an external circuit to make a sound, but it can be controlled to make a sound with different

frequency. The resonant frequency of the passive buzzer is 2kHz, which means the passive buzzer is loudest

when its resonant frequency is 2kHz.

Next, we will use an active buzzer to make a doorbell and a passive buzzer to make an alarm.

¢ǊŀƴǎƛǎǘƻǊ

Due to the current operating of buzzer is so large that GPIO of RPi output capability can not be satisfied, a

transistor of NPN type is needed here to amplify the current.

Transistor, the full name: semiconductor transistor, is a semiconductor device that controls current. Transistor

can be used to amplify weak signal, or works as a switch. It has three electrodes(PINs): base (b), collector (c)

and emitter (e). When there is current passing between "be", "ce" will allow several- fold current (transistor

magnification) pass, at this point, transistor works in the amplifying area. When current between "be" exceeds

a certain value, "ce" will not allow current to increase any longer, at this point, transistor works in the saturation

area. Transistor has two types shown below: PNP and NPN,

PNP transistor NPN transistor

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 80 www.freenove.com ȿ

ȿ support@freenove.com

According to the transistor's characteristics, it is often used as a switch in digital circuits. For micro- controller's

capacity of output current is very weak, we will use transistor to amplify current and drive large- current

components.

When use NPN transistor to drive buzzer, we often adopt the following method. If GPIO outputs high level,

current will flow through R1, the transistor gets conducted, and the buzzer make a sound. If GPIO outputs low

level, no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

When use PNP transistor to drive buzzer, we often adopt the following method. If GPIO outputs low level,

current will flow through R1, the transistor gets conducted, buzzer make a sound. If GPIO outputs high level,

no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

NPN transistor to drive buzzer

PNP transistor to drive buzzer

http://www.freenove.com/
mailto:support@freenove.com

81 Chapter 6 Buzzer

ȿ www.freenove.com

support@freenove.com ȿ

Circuit

Schematic diagram

Hardware connection

Note: in this circuit, the power supply for buzzer is 5V, and pull- up resistor of the button connected to the

power 3.3V. The buzzer can work when connected to power 3.3V, but it will reduce the loudness.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 82 www.freenove.com ȿ

ȿ support@freenove.com

Code

In this project, buzzer is controlled by the button. When the button is pressed, the buzzer sounds. And when

the button is released, the buzzer stops sounding. In the logic, it is the same to using button to control LED.

/ /ƻŘŜ сΦмΦм 5ƻƻǊōŜƭƭ

First observe the project result, and then analyze the code.

1. Use cd command to enter 06.1.1_Doorbell directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/06.1.1_Doorbell

2. Use following command to compile Doorbell.c Doorbell.c

gcc Doorbell.c o Doorbell - lwiringPi

3. Then

sudo ./Doorbell

After the program is executed, press the button, then buzzer sounds. And when the button is release, the

buzzer will stop sounding.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#include <wiringPi.h>

#include <stdio.h>

#define buzze RPin 0 //define the buzze RPin

#define buttonPin 1 //define the buttonPin

int main(void)

{

 if (wiringPiSetup () == - 1){ //when initialize wiring failed, print message to screen

 printf ("setup wiringPi failed !");

 return 1;

 }

 pinMode(buzzeRPin, OUTPUT);

 pinMode(buttonPin , INPUT);

 pullUpDnControl (button Pin, PUD_UP); //pull up to high level

 while (1){

 if (digitalRead (buttonPin) == LOW){ //button has pressed down

 digitalWrite (buzzeRPin, HIGH); //buzzer on

 printf ("buzzer on... \ n");

 }

 else { //button has released

 digitalWrite (buzzeRPin, LOW); //buzzer off

 printf ("...buzzer off \ n");

 }

 }

http://www.freenove.com/
mailto:support@freenove.com

83 Chapter 6 Buzzer

ȿ www.freenove.com

support@freenove.com ȿ

29

30

31

 return 0;

}

The code is exactly the same to using button to control LED logically. You can try to use the PNP transistor to

achieve the function of his circuit once again.

tȅǘƘƻƴ /ƻŘŜ сΦмΦм 5ƻƻǊōŜƭƭ

First observe the project result, then analyze the code.

1. Use cd command to enter 06.1.1_Doorbell directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/06.1.1_Doorbell

2. Doorbell

python Doorbell.py

After the program is executed, press the button, then buzzer sounds. And when the button is released, the

buzzer will stop sounding.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

import RPi. GPIO as GPIO

buzzerPin = 11 # define the buzzerPin

buttonPin = 12 # define the buttonPin

def setup():

 print ('Progr am is starting...')

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(buzzerPin, GPIO. OUT) # Set buzzerPin's mode is output

 GPIO. setup(buttonPin , GPIO. IN, pull_up_down=GPIO. PUD_UP) # Set buttonPin's mode is

inp ut, and pull up to high level(3.3V)

def loop():

 while True:

 if GPIO. input (buttonPin)==GPIO. LOW:

 GPIO. output (buzzerPin, GPIO. HIGH)

 print ('buzzer on ...')

 else :

 GPIO. output (buzzerPin, GPIO. LOW)

 print ('buzzer off ...')

def destroy ():

 GPIO. output (buzzerPin, GPIO. LOW) # buzzer off

 GPIO. cleanup() # Release resource

if __name__ == '__main__' : # Program start from here

 setup()

 try :

 loop()

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 84 www.freenove.com ȿ

ȿ support@freenove.com

31

32

33

 except KeyboardInterrupt : # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy ()

The code is exactly the same to using button to control LED logically. You can try to use the PNP transistor

to achieve the function of his circuit once again.

Project 6.2 Alertor

Next, we will use a passive buzzer to make an alarm.

Component list and the circuit part is the similar to last section. In the Doorbell circuit only the active buzzer

needs to be replaced with a passive buzzer.

Code

In this project, the buzzer alarm is controlled by the button. Press the button, then buzzer sounds. If you

release the button, the buzzer will stop sounding. In the logic, it is the same to using button to control LED.

In the control method, passive buzzer requires PWM of certain frequency to sound.

/ /ƻŘŜ сΦнΦм !ƭŜǊǘƻǊ

First observe the project result, and then analyze the code.

1. Use cd command to enter 06.2.1_Alertor directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/06.2.1_Alertor

2. Use following command to compile Alertor . - lm and - lpthread

compiler options are needed to add here.

gcc Alertor.c o Alertor lwiringPi lm - lpthread

3. Then run .

sudo ./ Alertor

After the program is executed, press the button, then buzzer sounds. And when the button is release, the

buzzer will stop sounding.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

#include <wiringPi.h>

#include <stdio.h>

#include <softTone.h>

#include <math.h>

#define buzze RPin 0 //define the buzze RPin

#define buttonPin 1 //define the buttonPin

void alertor (int pin){

 int x;

 double sinVal , toneVal ;

 for (x=0; x<360; x++){ // The frequency is based on the sine curve .

 sinVal = sin (x * (M_PI / 180));

 toneVal = 2000 + sinVal * 500;

 softToneWrite (pin , toneVal);

 delay(1);

http://www.freenove.com/
mailto:support@freenove.com

85 Chapter 6 Buzzer

ȿ www.freenove.com

support@freenove.com ȿ

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 }

}

void stopAlertor (int pin){

 softToneWrite (pin , 0);

}

int main(void)

{

 if (wiringPiSetup () == - 1){ //when initialize wiring failed,print message to screen

 printf ("setup wiringPi failed !");

 return 1;

 }

 pinMode(buzzeRPin, OUTPUT);

 pinMode(but tonPin , INPUT);

 softToneCreate (buzzeRPin);

 pullUpDnControl (buttonPin , PUD_UP); //pull up to high level

 while (1){

 if (digitalRead (buttonPin) == LOW){ //button has pressed down

 alertor (buzzeRPin); //buzzer on

 printf ("alertor on... \ n");

 }

 else { //button has released

 stopAlertor (buzzeRPin); //buzzer off

 printf ("...buzzer off \ n");

 }

 }

 return 0;

}

The code is the same to the active buzzer logically, but the way to control the buzzer is different. Passive

buzzer requires PWM of certain frequency to control, so you need to create a software PWM pin though

softToneCreate (buzzeRPin). Here softTone is dedicated to generate square wave with variable frequency and

duty cycle fixed to 50%, which is a better choice for controlling the buzzer.

 softToneCreate(buzzeRPin);

In the while cycle of main function, when the button is pressed, subfunction alertor() will be called and the

alertor will issue a warning sound. The frequency curve of the alarm is based on the sine curve. We need to

calculate the sine value from 0 to 360 degree and multiply a certain value (here is 500) and plus the resonant

frequency of buzzer. We can set the PWM frequency through softToneWrite (pin, toneVal).

 void alertor (int pin){

 int x;

 double sinVal , toneVal ;

 for (x=0; x<360; x++){ // The frequency is based on the sine curve.

 sinVal = sin (x * (M_PI / 180));

 toneVal = 2000 + sinVal * 500;

 softToneWrite (pin , toneVal);

 delay(1);

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 86 www.freenove.com ȿ

ȿ support@freenove.com

 }

}

If you want to close the buzzer, just set PWM frequency of the buzzer pin to 0.

 void stopAlertor (int pin){

 softToneWrite (pin , 0);

}

The related functions of softTone is described as follows:

int softToneCreate (int pin) ;

This creates a software controlled tone pin.

void softToneWrite (int pin, int freq) ;

This updates the tone frequency value on the given pin.

For more details about softTone, please refer to :http://wiringpi.com/reference/software- tone- library/

tȅǘƘƻƴ /ƻŘŜ сΦнΦм !ƭŜǊǘƻǊ

First observe the project result, and then analyze the code.

1. Use cd command to enter 06.2.1_Alertor directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/06.2.1_Alertor

2. Use the python command to execute the Python code Alertor.py .

python Alertor.py

After the program is executed, press the button, then the buzzer sounds. When the button is released, the

buzzer will stop sounding.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

import RPi. GPIO as GPIO

import time

import math

buzzerPin = 11 # define th e buzzerPin

buttonPin = 12 # define the buttonPin

def setup():

 global p

 print ('Program is starting...')

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(buzzerPin, GPIO. OUT) # Set buzzerPin's mode is out put

 GPIO. setup(buttonPin , GPIO. IN, pull_up_down=GPIO. PUD_UP) # Set buttonPin's mode is

input, and pull up to high level(3.3V)

 p = GPIO. PWM(buzzerPin, 1)

 p. start (0);

def loop():

 while True:

 if GPIO. input (buttonPin)==GPIO. LOW:

 alertor ()

 print ('buzzer on ...')

 else :

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/reference/software-tone-library/

87 Chapter 6 Buzzer

ȿ www.freenove.com

support@freenove.com ȿ

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

 stopAlertor ()

 print ('buzzer off ...')

def alertor ():

 p. start (50)

 for x in range(0, 361): #frequency of the alarm along the sine wave change

 sinVal = math. sin (x * (math. pi / 180.0)) #calculate the sine value

 toneVal = 2000 + sinVal * 500 #Add to the resonant frequency with a Weighted

 p. ChangeFrequency(toneVal) #output PWM

 time. sleep(0.001)

def stopAlertor ():

 p. stop()

def destroy ():

 GPIO. output (buzzerPin, GPIO. LOW) # buzzer off

 GPIO. cleanup() # Release resource

if __name__ == '__main__' : # Program start from here

 setup()

 try :

 loop()

 except KeyboardInterrupt : # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy ()

The code is the same to the active buzzer logically, but the way to control the buzzer is different. Passive

buzzer requires PWM of certain frequency to control, so you need to create a software PWM pin through

softToneCreate (buzzeRPin). The way to create PWM is also introduced before in the sections about

BreathingLED and RGBLED.

 def setup():

 global p

 print ('Program is starting... ')

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(buzzeRPin, GPIO. OUT) # Set buzze RPin's mode is output

 GPIO. setup(buttonPin , GPIO. IN, pull_up_down=GPIO. PUD_UP) # Set buttonPin's mode is

input, and pull up t o high level(3.3V)

 p = GPIO. PWM(buzzeRPin, 1)

 p. start (0);

In the while cycle of main function, when the button is pressed, subfunction alertor() will be called and the

alertor will issue a warning sound. The frequency curve of the alarm is based on the sine curve. We need to

calculate the sine value from 0 to 360 degree and multiply a certain value (here is 500) and plus the resonant

frequency of buzzer. We can set the PWM frequency through p.ChangeFrequency(toneVal).

 def alertor ():

 p. start (50)

 for x in range(0, 361):

 sinVal = math. sin (x * (math. pi / 180.0))

 toneVal = 2000 + sinVal * 500

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 88 www.freenove.com ȿ

ȿ support@freenove.com

 p. ChangeFrequency(toneVal)

 time. sleep(0.001)

When the button is released, the buzzer will be closed.

 def stopAlertor ():

 p. stop()

http://www.freenove.com/
mailto:support@freenove.com

89 Chapter 7 PCF8591

ȿ www.freenove.com

support@freenove.com ȿ

Chapter 7 PCF8591

We have learned how to control the brightness of LED through PWM and understood that PWM is not the

real analog before. In this chapter, we will learn how to read analog quantities through PCF8591, convert it

into digit al quantity and convert the digital quantity into analog output. That is, ADC and DAC.

Project 7.1 Read the Voltage of Potentiometer

In this project, we will use the ADC function of PCF8591 to read the voltage value of potentiometer. And then

output the voltage value through the DAC to control the brightness of LED.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

Rotary potentiometer x1

PCF8591 x1

Resistor 10k x2

Resistor 220 x1

LED x1

http://www.freenove.com/
mailto:support@freenove.com

Chapter 7 PCF8591 90 www.freenove.com ȿ

ȿ support@freenove.com

Circuit knowledge

!5/

ADC, Analog- to- Digital Converter, is a device used to convert analog to digital. The range of the ADC on

PCF8591 is 8 bits, that means the resolution is 2^8=256 , and it represents the range (here is 3.3V) will be

divided equally to 256 parts. The analog of each range corresponds to one ADC values. So the more bits ADC

has, the denser the partition of analog will be, also the higher precision of the conversion will be.

Subsection 1: the analog in rang of 0V- 3.3/256 V corresponds to digital 0;

Subsection 2: the analog in rang of 3.3 /256 V- 2*3.3 /256V corresponds to digital 1;

The following analog will be divided accordingly.

5!/

DAC, that is, Digital- to- Analog Converter, is the reverse process of ADC. The digital I/O port can output high

level and low level, but can not output an intermediate voltage value, which can be solved by DAC. PCF8591

has a DAC output pin with 8- bit accuracy, which can divide VDD (here is 3.3V) into 2
8
=256 parts. For example,

when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when the digital quantity is 128,

the output voltage value is 3.3/256 *128=1.65V, the higher accuracy of PCF8591 is, the higher the accuracy

of output voltage value is.

http://www.freenove.com/
mailto:support@freenove.com

91 Chapter 7 PCF8591

ȿ www.freenove.com

support@freenove.com ȿ

Component knowledge

tƻǘŜƴǘƛƻƳŜǘŜǊ

Potentiometer is a resistive element with three Terminal part and the resistance can be adjusted according to

a certain variation. Potentiometer is often made up by resistance and removable brush. When the brush moves

along the resistor body, there will be resistance or voltage that has a certain relationship with displacement

on the output side (3). Figure shown below is the linear sliding potentiometer and its symbol.

What between potentiometer pin 1 and pin 2 is the resistor body, and pins 3 is connected to brush. When

brush moves from pins 1 to pin 2, the resistance between pin 1, and pin 3 will increase up to body resistance

linearly, and the resistance between pin 2 and pin 3 will decrease down to 0 linearly.

In the circuit. The both sides of resistance body are often connected to the positive and negative electrode of

the power. When you slide the brush pin 3, you can get a certain voltage in the range of the power supply.

wƻǘŀǊȅ ǇƻǘŜƴǘƛƻƳŜǘŜǊ

Rotary potentiometer and linear potentiometer have similar function; the only difference is: the resistance is

adjusted through rotating the potentiometer.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 7 PCF8591 92 www.freenove.com ȿ

ȿ support@freenove.com

t/Cурфм

The PCF8591 is a single- chip, single- supply low power 8- bit CMOS data acquisition device with four analog

inputs, one analog output and a serial I2C- bus interface.

FEATURES

 ̧ Single power supply

 ̧ Operating supply voltage 2.5 V to 6 V

 ̧ Low standby current

 ̧ Serial input/output via I2C- bus

 ̧ Address by 3 hardware address pins

 ̧ Sampling rate given by I2C- bus speed

 ̧ differential inputs

 ̧ Auto- incremented channel selection

 ̧ Analog voltage ranges from VSS to VDD

 ̧ On- chip track and hold circuit

 ̧ 8- bit successive approximation A/D conversion

 ̧ Multiplying DAC with one analog output.

 ̧ 4 analog inputs programmable as single- ended

or

PINNING

SYMBOL PIN DESCRIPTION TOP VIEW

AIN0 1

Analog inputs (A/D converter)

AIN1 2

AIN2 3

AIN3 4

A0 5

Hardware address A1 6

A2 7

Vss 8 Negative supply voltage

SDA 9 I2C- bus data input/output

SCL 10 I2C- bus clock input

OSC 11 Oscillator input/output

EXT 12 external/ internal switch for oscillator

input

AGND 13 Analog ground

Vref 14 Voltage reference input

AOUT 15 Analog output(D/A converter)

Vdd 16 Positive supply voltage

For more details about PCF8591, please refer to datasheet.

Lн/ ŎƻƳƳǳƴƛŎŀǘƛƻƴ

I2C(Inter- Integrated Circuit) is a two- wire serial communication mode, which can be used to connection of

micro controller and its peripheral equipment. Devices using I2C communication must be connected to the

serial data (SDA) line, and serial clock (SCL) line (called I2C bus). Each device has a unique address and can be

used as a transmitter or receiver to communicate with devices connected to the bus.

http://www.freenove.com/
mailto:support@freenove.com

93 Chapter 7 PCF8591

ȿ www.freenove.com

support@freenove.com ȿ

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 7 PCF8591 94 www.freenove.com ȿ

ȿ support@freenove.com

Configure I2C

9ƴŀōƭŜ Lн/

The I2C interface raspberry pie is closed in default. You need to open it manually. You can enable the I2C

interface in the following way.

Type command in the terminal:

sudo raspi- config

Then open the following dialog box:

5 Interfacing Ą P5 Ą Ą RPi later. Then the I2C

module is started.

Type a command to check whether the I2C module is started:

lsmod | grep i2c

If the I2C module has been started, the following content will be shown:

http://www.freenove.com/
mailto:support@freenove.com

95 Chapter 7 PCF8591

ȿ www.freenove.com

support@freenove.com ȿ

Lƴǎǘŀƭƭ Lн/π¢ƻƻƭǎ

Type the command to install I2C- Tools.

sudo apt- get install i2c- tools

I2C device address detection:

i2cdetect y 1

Here 48 (HEX) is the I2C address of PCF8591.

Code

/ /ƻŘŜ тΦмΦм ǇŎŦурфм

First observe the project result, and then analyze the code.

1. Use cd command to enter 07.1.1_ PCF8591 directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/07.1.1_PCF8591

2. Use following command to compile PCF8591.c PCF8591

gcc PCF8591.c o PCF8591 lwiringPi

3. Then run the generated PCF8591

sudo ./PCF8591

After the program is executed, shift the potentiometer, then the terminal will print out the potentiometer

voltage value and the converted digital content. When the voltage is greater than 1.6V (voltage need to turn

on red LED), LED starts emitting light. If you continue to increase the output voltage, the LED will become

more bright gradually.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 7 PCF8591 96 www.freenove.com ȿ

ȿ support@freenove.com

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#include <wiringPi.h>

#include <pcf 8591.h>

#include <stdio.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

int main(void){

 int value;

 float voltage ;

 wiringPiSetup ();

 pcf8591Setup(pinbase, address);

 while (1){

 value = analogRead(A0); //read A0 pin

 analogWrite (pinbase+0, value);

 voltage = (float) value / 255.0 * 3.3 ; // calculate voltage

 pri ntf ("ADC value : %d , \ tVoltage : %.2fV \ n", value, voltage);

 delay(100);

 }

}

The default I2C address of PCF8591 is 0x48. The pinbase is an any value greater than or equal to 64. And we

have defined the ADC input channel A1, A2, A0, A3 of PCF8591.

 #define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

In the main function, after PCF8591 is initialized by pcf8591Setup(pinbase, address), you can use the function

analogRead() and analogWrite() to operate the ADC and DAC.

 pcf8591Setup(pinbase, address);

, analogRead (A0) is used to read the ADC value of the A0 port (connected potentiometer),

then the read ADC value is output through analogWrite(). And then the corresponding actual voltage value

will be calculated and displayed.

 while (1){

 value = analogRead(A0); //read A0 pin

 analogWrite (pinbase+0, value);

 voltage = (float) value / 255.0 * 3.3 ; // calculate voltage

 printf ("ADC value : %d , \ tVoltage : %.2fV \ n", value, voltage);

http://www.freenove.com/
mailto:support@freenove.com

97 Chapter 7 PCF8591

ȿ www.freenove.com

support@freenove.com ȿ

 delay(100);

 }

Details about analogRead() and analogWrite():

void analogWrite (int pin, int value) ;

This writes the given value to the supplied analog pin. You will need to register additional analog modules

to enable this function for devices.

int analogRead (int pin) ;

This returns the value read on the supplied analog input pin. You will need to register additional analog

modules to enable this function for devices.

For more detailed instructions about PCF8591 of wiringPi, please refer to:

http://wiringpi.com/extensiones/i2c- pcf8591/

tȅǘƘƻƴ /ƻŘŜ тΦмΦм ǇŎŦурфм

First install a smbus module, and the command is as follows:

sudo apt- get install python- smbus

After the installation is completed, operate according to the following steps. Observe the project result, and

then analyze the code.

1. Use cd command to enter 07.1.1_pcf8591 directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/07.1.1_pcf8591

2. Use the python command to execute the Python code

python pcf8591.py

After the program is executed, shift the potentiometer, then the terminal will print out the potentiometer

voltage value and the converted digital content. When the voltage is greater than 1.6V (voltage need to turn

on red LED), LED starts emitting light. If you continue to increase the output voltage, the LED will become

more bright gradually.

The following is the code:

1

2

3

4

5

6

7

import smbus

import time

address = 0x48 #default address of PCF8591

bus=smbus. SMBus(1)

cmd=0x40 #command

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/extensions/i2c-pcf8591/

Chapter 7 PCF8591 98 www.freenove.com ȿ

ȿ support@freenove.com

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

def analogRead(chn): #read ADC value,chn:0,1,2,3

 value = bus. read_byte_data(address, cmd+chn)

 return value

def analogWrite (value): #write DAC value

 bus. write_byte_data (address, cmd, value)

def loop():

 while True:

 value = analogRead(0) #read the ADC value of channel 0

 analogWrite (value) #write the DAC value

 voltage = value / 255.0 * 3.3 #calculate the voltage value

 print ('ADC Value : %d, Voltage : %.2f' %(value, voltage))

 time. sleep(0.01)

def destroy ():

 bus. close ()

if __name__ == '__main__' :

 print ('Program is starting ... ')

 try :

 loop()

 except KeyboardInterrupt :

 destroy ()

First, define the I2C address and control byte of PCF8591, and then instantiate object bus of SMBus, which

can be used to operate ADC and DAC of PCF8591.

 address = 0x48 # default address of PCF8591

bus=smbus. SMBus(1)

cmd=0x40 # command

This subfunction is used to read the ADC s the input channel number: 0, 1, 2, 3.

Its return value is the read ADC value.

 def analogRead(chn): # read ADC valuĕchn:0,1,2,3

 value = bus. read_byte_data(address, cmd+chn)

 return value

This subfunction is used to write DAC. Its parameter value represents the digital quality to be written,

between 0- 255.

 def analogWrite (value): # write DAC value

 bus. write _byte_data(address, cmd, value)

In the while first read the ADC value of channel 0, and then write the value as the DAC digital quality

and output corresponding voltage in the out pin of PCF8591. Then calculate the corresponding voltage value

and print it out.

 def loop():

 while True:

http://www.freenove.com/
mailto:support@freenove.com

99 Chapter 7 PCF8591

ȿ www.freenove.com

support@freenove.com ȿ

 value = analogRead(0) #read the ADC value of channel 0

 analogWrite (value) # write ADC value

 voltage = value / 255.0 * 3.3 # calculate voltage value

 print ('ADC Value : %d, V oltage : %.2f' %(value, voltage))

 time. sleep(0.01)

About smbus module:

smbus Module

That is System Management Bus.This module defines an object type that allows SMBus transactions on

hosts running the Linux kernel. The host kernel must have I2C support, I2C device interface support, and a

bus adapter driver. All of these can be either built- in to the kernel, or loaded from modules.

In Python, you can use help(smbus) to view the relevant function and their descriptions.

bus=smbus.SMBus(1) Create an SMBus class object.

bus.read_byte_data(address,cmd+chn) Read a byte of data from an address and return it.

bus.write_byte_data(address,cmd,value) Write a byte of data to an address.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 8 Potentiometer & LED 100 www.freenove.com ȿ

ȿ support@freenove.com

Chapter 8 Potentiometer & LED

We have learned how to use ADC and DAC before. When using DAC output analog to drive LED, we found

that, when the output voltage is less than led turn- on voltage, the LED does not light, the output analog

voltage is greater than the LED voltage, the LED will light. This leads to a certain degree of waste of resources.

Therefore, in the control of LED brightness, we should choose a more reasonable way of PWM control. In this

chapter, we learn to control the brightness of LED through a potentiometer.

Project 8.1 Soft Light

In this project, we will make a soft light. Use PCF8591 to read ADC value of potentiometers and map it to duty

cycle ratio of PWM used to control the brightness of LED. Then you can make the LED brightness changed by

shifting the potentiometer.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

Rotary potentiometer x1

PCF8591 x1

Resistor 10k x2

Resistor 220 x1

LED x1

http://www.freenove.com/
mailto:support@freenove.com

101 Chapter 8 Potentiometer & LED

ȿ www.freenove.com

support@freenove.com ȿ

Circuit

The circuit of this project is similar to the one in last chapter. The only difference is that the pin used to control

LED is different.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 8 Potentiometer & LED 102 www.freenove.com ȿ

ȿ support@freenove.com

Code

/ /ƻŘŜ уΦмΦм {ƻŦǘƭƛƎƘǘ

First observe the project result, and then analyze the code.

1. Use cd command to enter 08.2.1_Softlight directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/08.1.1_Softlight

2. Softlight.c

gcc Softlight.c o Softlight lwiringPi lpthread

3. Then run the generated file

sudo ./Softlight

After the program is executed, shift the potentiometer, then the terminal window will print out the voltage

value of the potentiometer and the converted digital quantity. And brightness of LED will be changed

consequently.

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

#include <wiringPi.h>

#incl ude <pcf8591.h>

#include <stdio.h>

#include <softPwm.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

#define ledPin 0

int main(void){

 int value;

 float voltage ;

 if (wiringPiSetup () == - 1){ //when initialize wiring failed,print message to screen

 printf ("setup wiringPi failed !");

 return 1;

 }

 softPwmCreate(ledPin , 0, 100);

 pcf8591Setup(pinbase, address);

 while (1){

 value = analogRead(A0); //read A0 pin

 softPwmWrite(ledPin , value*100/ 255);

 voltage = (float) value / 255.0 * 3.3 ; // calculate voltage

 printf ("ADC value : %d , \ tVoltage : % .2fV \ n", value, voltage);

 delay(100);

http://www.freenove.com/
mailto:support@freenove.com

103 Chapter 8 Potentiometer & LED

ȿ www.freenove.com

support@freenove.com ȿ

30

31

32

 }

 return 0;

}

In the code, read ADC value of potentiometers and map it to duty cycle of PWM to control LED brightness.

tȅǘƘƻƴ /ƻŘŜ уΦмΦм {ƻŦǘƭƛƎƘǘ

First observe the project result, and then analyze the code.

1. Use cd command to enter 08.2.1_Softlight directory of Python code

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/08.1.1_Softlight

2. Use the python command to execute the Python code .

python Softlight.py

After the program is executed, shift the potentiometer, then the terminal window will print out the voltage

value of the potentiometer and the converted digital quantity. And brightness of LED will be changed

consequently.

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

import RPi. GPIO as GPIO

import smbus

import time

address = 0x48

bus=smbus. SMBus(1)

cmd=0x40

ledPin = 11

def analogRead(chn):

 value = bus. read_byte_data(address, cmd+chn)

 return value

def analogWrite (value):

 bus. write_byte_data (address, cmd, value)

def setup():

 global p

 GPIO. setmode(GPIO. BOARD)

 GPIO. setup(ledPin , GPIO. OUT)

 GPIO. output (ledPin , GPIO. LOW)

 p = GPIO. PWM(led Pin, 1000)

 p. start (0)

def loop():

 while True:

 value = analogRead(0) #read A0 pin

 p. ChangeDutyCycle(value*100/ 255) #Convert ADC value to duty cycle of PWM

 voltage = value / 255.0 * 3.3 #calculate voltage

http://www.freenove.com/
mailto:support@freenove.com

Chapter 8 Potentiometer & LED 104 www.freenove.com ȿ

ȿ support@freenove.com

31

32

33

34

35

36

37

38

39

40

41

42

43

44

 print ('ADC Value : %d, Voltage : %.2f' %(value, voltage))

 time. sleep(0.01)

def destroy ():

 bus. close ()

 GPIO. cleanup()

if __name__ == '__main__' :

 print ('Program is starting ... ')

 setup()

 try :

 loop()

 except KeyboardInterrupt :

 destroy ()

In the code, read ADC value of potentiometers and map it to duty cycle of PWM to control LED brightness.

http://www.freenove.com/
mailto:support@freenove.com

105 Chapter 9 Potentiometer & RGBLED

ȿ www.freenove.com

support@freenove.com ȿ

Chapter 9 Potentiometer & RGBLED

In this chapter, we will use 3 potentiometers to control the brightness of 3 LEDs of RGBLED to make it show

different colors.

Project 9.1 Colorful Light

In this project, 3 potentiometers are used to control RGBLED and the principle is the same with the front soft

light. Namely, read the voltage value of the potentiometer and then convert it to PWM used to control LED

brightness. Difference is that the front one need only one LED, but this project needs a RGBLED 3 LEDs .

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

Jumper

Rotary potentiometer x3

PCF8591 x1

Resistor 10k x2

Resistor 220 x3

RGBLED x1

http://www.freenove.com/
mailto:support@freenove.com

Chapter 9 Potentiometer & RGBLED 106 www.freenove.com ȿ

ȿ support@freenove.com

Circuit

Schematic diagram

http://www.freenove.com/
mailto:support@freenove.com

107 Chapter 9 Potentiometer & RGBLED

ȿ www.freenove.com

support@freenove.com ȿ

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 9 Potentiometer & RGBLED 108 www.freenove.com ȿ

ȿ support@freenove.com

Code

/ /ƻŘŜ фΦмΦм /ƻƭƻǊŦǳƭ {ƻŦǘƭƛƎƘǘ

First observe the project result, and then analyze the code.

1. Use cd command to enter 09.1.1_ColorfulSoftlight directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/09.1.1_ColorfulSoftlight

2. Use following command to compile "ColorfulSoftlight.c" and generate executable file "ColorfulSoftlight".

gcc ColorfulSoftlight.c o ColorfulSoftlight lwiringPi lpthread

3. Then run the generated file "ColorfulSoftlight".

sudo ./ColorfulSoftlight

After the program is executed, rotate one of potentiometers, then the color of RGBLED will change

consequently. And the terminal window will print out the ADC value of each potentiometer.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#include <wiringPi.h>

#include <pcf8591.h>

#include <stdio.h>

#include <softPwm.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number a bove 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

#define ledRedPin 3 // define 3 pin s of RGBLED

#define ledGreenPin 2

#define ledBluePin 0

int main(void){

 int val_Red, val_Green, val_Blue ;

 if (wiringPiSetup () == - 1){ //when initialize wiring failed, print message to screen

 printf (" setup wiringPi failed ! ");

 return 1;

 }

 softPwmCreate(ledRedPin, 0, 100); // create 3 PWM output pins for RGBLED

 softPwmCreate(ledGreenPin, 0, 100);

http://www.freenove.com/
mailto:support@freenove.com

109 Chapter 9 Potentiometer & RGBLED

ȿ www.freenove.com

support@freenove.com ȿ

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 softPwmCreate(ledBluePin , 0, 100);

 pcf8591Setup(pinbase, address); // initialize PCF8591

 while (1){

 val_Red = analogRead(A0); // read 3 potentiometers

 val_Green = analogRead(A1);

 val_Blue = analogRead(A2);

 softPwmWrite(ledRedPin, val_Red*100/ 255); // map the read value of

potentiometer s into PWM value and output it

 softPwmWrite(ledGreenPin, val_Green*100/ 255);

 softPwmWrite(ledBluePin , val_Blue *100/ 255);

 // print out the read AD C value

 printf (" ADC value val_Red: %d , \ tval_Green: %d , \ tval_Blue: %d

\ n" , val_Red, val_Green, val_Blue);

 delay(100);

 }

 return 0;

}

In the code, read the ADC value of 3 potentiometers and map it into PWM duty cycle to control the control

3 LEDs with different color of RGBLED, respectively.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 9 Potentiometer & RGBLED 110 www.freenove.com ȿ

ȿ support@freenove.com

tȅǘƘƻƴ /ƻŘŜ фΦмΦм /ƻƭƻǊŦǳƭ{ƻŦǘƭƛƎƘǘ

First observe the project result, and then analyze the code.

1. Use cd command to enter 09.1.1_ColorfulSoftlight directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/09.1.1_ ColorfulSoftlight

2. Use python command to execute python code "ColorfulSoftlight.py".

python ColorfulSoftlight.py

After the program is executed, rotate one of potentiometers, then the color of RGBLED will change

consequently. And the terminal window will print out the ADC value of each potentiometer.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

import RPi. GPIO as GPIO

import smbus

import time

address = 0x48

bus=smbus. SMBus(1)

cmd=0x40

ledRedPin = 15 #define 3 pins of RGBLED

ledGreenPin = 13

ledBluePin = 11

def analogRead(chn): #read ADC value

 bus. write_byte (address, cmd+chn)

 value = bus. read_byte(address)

 value = bus. read_byte(address)

 return value

def analogWrite (value):

 bus. write_byte_data (address, cmd, value)

def setup():

 global p_Red, p_Green, p_Blue

 GPIO. setmode(GPIO. BOARD)

 GPIO. setup(ledRedPin, GPIO. OUT) #set 3 pins of RGBLED to output mode

 GPIO. setup(ledGreenPin, GPIO. OUT)

 GPIO. setup(ledBluePin , GPIO. OUT)

 p_Red = GPIO. PWM(ledRedPin, 1000) #configure PWM to 3 pins of RGBLED

 p_Red. start (0)

 p_Green = GPIO. PWM(ledGreenPin, 1000)

 p_Green. start (0)

 p_Blue = GPIO. PWM(ledBluePin , 1000)

 p_Blue. start (0)

http://www.freenove.com/
mailto:support@freenove.com

111 Chapter 9 Potentiometer & RGBLED

ȿ www.freenove.com

support@freenove.com ȿ

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

def loop():

 while True:

 value_Red = analogRead(0) #read ADC value of 3 potentiometer s

 value_Green = analogRead(1)

 value_Blue = analogRead(2)

 p_Red. ChangeDutyCycle(value_Red*100/ 255) #map the read value of potentiometers

into PWM value and output it

 p_Green. ChangeDutyCycle(value_Green*100/ 255)

 p_Blue. ChangeDutyCycle (value_Blue*100/ 255)

 #print read ADC value

 print ('ADC Value

value_Red: %d , \ tvlue_Green: %d , \ tvalue_Blue: %d' %(value_Red, value_Green, value_Blue))

 time. sleep(0.01)

def destroy ():

 bus. close ()

 GPIO. cleanup()

if __name__ == '__main__' :

 print 'Program is starting ... '

 setup()

 try :

 loop()

 except KeyboardInterrupt :

 destroy ()

In the code, read the ADC value of 3 potentiometers and map it into PWM duty cycle to control the control

3 LEDs with different color of RGBLED, respectively.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 10 Photoresistor & LED 112 www.freenove.com ȿ

ȿ support@freenove.com

Chapter 10 Photoresistor & LED

In this chapter, we will learn how to use photoresistor.

Project 10.1 NightLamp

Photoresistor is very sensitive to illumination strength. So we can use this feature to make a nightlamp, when

ambient light gets darker, LED will become brighter automatically, and when the ambient light gets brighter,

LED will become darker automatically.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

Photoresistor x1

PCF8591 x1

Resistor 10k x3

Resistor 220 x1

LED x1

http://www.freenove.com/
mailto:support@freenove.com

113 Chapter 10 Photoresistor & LED

ȿ www.freenove.com

support@freenove.com ȿ

Component knowledge

tƘƻǘƻǊŜǎƛǎǘƻǊ

Photoresistor is a light sensitive resistor. When the strength that light casts onto the photoresistor surface is

not the same, resistance of photoresistor will change. With this feature, we can use photoresistor to detect

light intensity. Photoresistor and symbol are as follows.

The circuit below is often used to detect the change of photoresistor resistance:

In the above circuit, when photoresistor resistance changes due to light intensity, voltage between

photoresistor and resistor R1 will change, so light's intensity can be obtained by measuring the voltage.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 10 Photoresistor & LED 114 www.freenove.com ȿ

ȿ support@freenove.com

Circuit

The circuit of this project is similar to the one in last chapter. The only difference is that the input signal of the

AIN0 pin of PCF8591 is changed from a potentiometer to combination of a photoresistor and a resistor.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

115 Chapter 10 Photoresistor & LED

ȿ www.freenove.com

support@freenove.com ȿ

http://www.freenove.com/
mailto:support@freenove.com

Chapter 10 Photoresistor & LED 116 www.freenove.com ȿ

ȿ support@freenove.com

Code

The code of this project is identical with the one in last chapter logically.

/ /ƻŘŜ млΦмΦм bƛƎƘǘƭŀƳǇ

First observe the project result, and then analyze the code.

1. Use cd command to enter 010.1.1_Nightlamp directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/10.1.1_Nightlamp

2. Use following command to c Nightlamp.c

gcc Nightlamp.c o Nightlamp lwiringPi - lpthread

3. Nightlamp

sudo ./Nightlamp

After the program is executed, when you cover the photosensitive resistance or make a flashlight toward the

photoresistor, the brightness of LED will be enhanced or weakened. And the terminal window will print out

the current input voltage value of PCF8591 AIN0 pin and the converted digital quantity.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#include <wiringPi.h>

#include <pcf8591.h>

#include <stdio.h>

#include <softPwm.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any n umber above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

#define ledPin 0

int main(void){

 int value;

 float voltage ;

 if (wiringPiSetup () == - 1){ //when initialize wiring failed,print message to screen

 printf ("setup wiringPi failed !");

 return 1;

 }

 softPwmCreate(ledPin , 0, 100);

 pcf8591Setup(pinbase, address);

 while (1){

 value = analogRead(A0); //read A0 pin

 softPwmWrite(ledPin , value*100/ 255);

 voltage = (float) value / 255.0 * 3.3 ; // calculate voltage

 printf ("ADC value : %d , \ tVoltage : %.2fV \ n", value, voltage);

http://www.freenove.com/
mailto:support@freenove.com

117 Chapter 10 Photoresistor & LED

ȿ www.freenove.com

support@freenove.com ȿ

29

30

31

32

 delay(100);

 }

 return 0;

}

tȅǘƘƻƴ /ƻŘŜ млΦмΦм bƛƎƘǘƭŀƳǇ

First observe the project result, and then analyze the code.

1. Use cd command to enter 09.1.1_Nightlamp directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/10.1.1_Nightlamp

2. Use the python command to execute the Python code Nightlamp.py .

python Nightlamp.py

After the program is executed, when you cover the photosensitive resistance or make a flashlight toward the

photoresistor, the brightness of LED will be enhanced or weakened. And the terminal window will print out

the current input voltage value of PCF8591 AIN0 pin and the converted digital quantity.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

import RPi. GPIO as GPIO

import smbus

import time

address = 0x48

bus=smbus. SMBus(1)

cmd=0x40

ledPin = 11

def analogRead(chn):

 value = bus. read_byte_data(address, cmd+chn)

 return value

def analogWrite (value):

 bus. write_byte_data (address, cmd, value)

def setup():

 global p

 GPIO. setmode(GPIO. BOARD)

 GPIO. setup(ledPin , GPIO. OUT)

 GPIO. output (ledPin , GPIO. LOW)

 p = GPIO. PWM(ledPin , 1000)

 p. start (0)

def loop():

 while True:

 value = analogRead(0)

 p. ChangeDutyCycle(value*100/ 255)

 voltage = value / 255.0 * 3.3

http://www.freenove.com/
mailto:support@freenove.com

Chapter 10 Photoresistor & LED 118 www.freenove.com ȿ

ȿ support@freenove.com

31

32

33

34

35

36

37

38

39

40

41

42

43

44

 print ('ADC Value : %d, Voltage : %.2f' %(value, voltage))

 time. sleep(0.01)

def destroy ():

 bus. close ()

 GPIO. cleanup()

if __name__ == '__main__' :

 print ('Program is starting ... ')

 setup()

 try :

 loop()

 except KeyboardInterrupt :

 destroy ()

http://www.freenove.com/
mailto:support@freenove.com

119 Chapter 11 Thermistor

ȿ www.freenove.com

support@freenove.com ȿ

Chapter 11 Thermistor

In this chapter, we will learn another new kind of resistor, thermistor.

Project 11.1 Thermometer

The resistance of thermistor will be changed with temperature change. So we can make a thermometer

according to this feature.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

Thermistor x1

PCF8591 x1

Resistor 10k x3

http://www.freenove.com/
mailto:support@freenove.com

Chapter 11 Thermistor 120 www.freenove.com ȿ

ȿ support@freenove.com

Component knowledge

¢ƘŜǊƳƛǎǘƻǊ

Thermistor is a temperature sensitive resistor. When the temperature changes, resistance of thermistor will

change. With this feature, we can use thermistor to detect temperature intensity. Thermistor and symbol are

as follows.

The relationship between resistance value and temperature of thermistor is:

Rt=R*EXP [B*(1/T2- 1/T1)]

Where:

Rt is the thermistor resistance under T2 temperature;

R is in the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of E;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15+celsius temperature.

Parameters of the thermistor we use is: B=3950, R=10k, T1=25.

The circuit connection method of the thermistor is similar to photoresistor, like the following method:

We can use the value measured by the analog pin of UNO to obtain resistance value of thermistor, and then

can use the formula to obtain the temperature value.

Consequently, the temperature formula can be concluded:

T2 = 1/(1/T1 + ln(Rt/R)/B)

http://www.freenove.com/
mailto:support@freenove.com

121 Chapter 11 Thermistor

ȿ www.freenove.com

support@freenove.com ȿ

Circuit

The circuit of this project is similar to the one in last chapter. The only difference is that the photoresistor is

replaced by the thermistor.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 11 Thermistor 122 www.freenove.com ȿ

ȿ support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

123 Chapter 11 Thermistor

ȿ www.freenove.com

support@freenove.com ȿ

Code

In this project code, the ADC value is still needed to be read, and the difference is that a specific formula is

used to calculate the temperature value.

/ /ƻŘŜ ммΦмΦм ¢ƘŜǊƳƻƳŜǘŜǊ

First observe the project result, and then analyze the code.

Use cd command to enter 11.1.1_Thermometer directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/11.1.1_Thermometer

1. Thermometer Thermometer -

option is needed.

gcc Thermometer.c o Thermometer lwiringPi lm

2. Then

sudo ./Thermometer

After the program is executed, the terminal window will print out the current ADC value, voltage value and

temperature value. Try to pinch the thermistor (do not touch pin) with hand lasting for a while, then the

temperature value will be increased.

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

#include <wiringPi.h>

#include <pcf8591.h>

#include <stdio.h>

#include <math.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

int main(void){

http://www.freenove.com/
mailto:support@freenove.com

Chapter 11 Thermistor 124 www.freenove.com ȿ

ȿ support@freenove.com

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 int adcValue;

 float tempK, tempC;

 float voltage , Rt;

 if (wiringPiSetup () == - 1){ //when initialize wiring failed,print message to screen

 printf ("setup wiringPi failed !");

 return 1;

 }

 pcf8591Setup(pinbase, address);

 while (1){

 adcValue = analogRead(A0); //read A0 pin

 voltage = (float) adcValue / 255.0 * 3.3 ; // calculate voltage

 Rt = 10 * voltage / (3.3 - voltage); //calculate resistance value of thermistor

 tempK = 1/(1/(273.15 + 25) + log (Rt/ 10)/ 3950.0); //calculate temperature (Kelvin)

 tempC = tempK - 273.15; //calculate temperature (Celsius)

 printf ("ADC value : %d , \ tVoltage : %.2fV,

\ tTemperature : %.2fC \ n", adcValue, voltage , tempC);

 delay(100);

 }

 retu rn 0;

}

In the code, read the ADC value of PCF8591 A0 port, and then calculate the voltage and the resistance of

thermistor according to Ohms law. Finally, calculate the current temperature. according to the front formula.

tȅǘƘƻƴ /ƻŘŜ ммΦмΦм ¢ƘŜǊƳƻƳŜǘŜǊ

First observe the project result, and then analyze the code.

1. Use cd command to enter 11.1.1_Thermometer directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/11.1.1_Thermometer

2. Use python command to execute python code

python Thermometer.py

After the program is executed, the terminal window will print out the current ADC value, voltage value and

temperature value. Try to pinch the thermistor (do not touch pin) with hand lasting for a while, then the

temperature value will be increased.

The following is the code:

http://www.freenove.com/
mailto:support@freenove.com

125 Chapter 11 Thermistor

ȿ www.freenove.com

support@freenove.com ȿ

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

import RPi. GPIO as GPIO

import smbus

import time

import math

address = 0x48

bus=smbus. SMBus(1)

cmd=0x40

def analogRead(chn):

 value = bus. read_byte_data(address, cmd+chn)

 return value

def analogWrite (value):

 bus. write_byte_data (address, cmd, value)

def setup():

 GPIO. setmode(GPIO. BOARD)

def loop():

 while True:

 value = analogRead(0) #read A0 pin

 voltage = value / 255.0 * 3.3 #calculate voltage

 Rt = 10 * voltage / (3.3 - voltage) #calculate resistance value of thermistor

 tempK = 1/(1/(273.15 + 25) + math. log (Rt/ 10)/ 3950.0) #calculate temperature

(Kelvin)

 tempC = tempK - 273.15 #calculate temperature (Celsius)

 print ('ADC Value : %d, Voltage : %.2f, Temperature : %.2f' %(value , voltage , tempC))

 time. sleep(0.01)

def destroy ():

 GPIO. cle anup()

if __name__ == '__main__' :

 print ('Program is starting ... ')

 setup()

 try :

 loop()

 except KeyboardInterrupt :

 destroy ()

In the code, read the ADC value of PCF8591 A0 port, and then calculate the voltage and the resistance of

thermistor according to Ohms law. Finally, calculate the current temperature. according to the front formula.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 12 Joystick 126 www.freenove.com ȿ

ȿ support@freenove.com

Chapter 12 Joystick

In the previous chapter, we have learned how to use rotary potentiometer. Now, let's learn a new electronic

module Joystick which working on the same principle as rotary potentiometer.

Project 12.1 Joystick

In this project, we will read the output data of Joystick and print it to the screen.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

Jumper

PCF8591 x1

Resistor 10k x2

Joystick x1

http://www.freenove.com/
mailto:support@freenove.com

127 Chapter 12 Joystick

ȿ www.freenove.com

support@freenove.com ȿ

Component knowledge

WƻȅǎǘƛŎƪ

Joystick is a kind of sensor used with your fingers, which is widely used in gamepad and remote controller. It

can shift in direction Y or direction X at the same time. And it can also be pressed in direction Z.

Two rotary potentiometers inside the joystick are set to detect the shift direction of finger, and a push

button in vertical direction is set to detect the action of pressing.

When read the data of joystick, there are some different between axis: data of X and Y axis is analog, which

need to use ADC. Data of Z axis is digital, so you can directly use the GPIO to read, or you can also use ADC

to read.

X

Y

http://www.freenove.com/
mailto:support@freenove.com

Chapter 12 Joystick 128 www.freenove.com ȿ

ȿ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

129 Chapter 12 Joystick

ȿ www.freenove.com

support@freenove.com ȿ

Code

In this project code, we will read ADC value of X and Y axis of Joystick, and read digital quality of Z axis, then

print these data out.

/ /ƻŘŜ мнΦмΦм WƻȅǎǘƛŎƪ

First observe the project result, and then analyze the code.

1. Use cd command to enter 12.1.1_Joystick directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/12.1.1_ Joystick

2. Use following command to compile "Joystick.c" and generate executable file "Joystick.c". "- lm" option is

needed.

gcc Joystick.c o Joystick lwiringPi lm

3. Then run the generated file "Joystick".

sudo ./Joystick

After Program is executed, the terminal window will print out the data of 3 axes X, Y, Z. And shifting the

Joystick or pressing it will make those data change.

The flowing is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

#include <wiringPi.h>

#include <pcf8591.h>

#include <stdio.h>

#include <softPwm.h>

#define address 0x48 //pcf8591 default address

#define pi nbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

#define Z_Pin 1 // define pin for axi s Z

int main(void){

 int val_X, val_Y, val_Z;

 if (wiringPiSetup () == - 1){ //wh en initialize wiring failed,print message to screen

http://www.freenove.com/
mailto:support@freenove.com

Chapter 12 Joystick 130 www.freenove.com ȿ

ȿ support@freenove.com

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 printf (" setup wiringPi failed ! ");

 return 1;

 }

 pinMode(Z_Pin, INPUT); // set Z_Pin as input pin and pull - up mode

 pullUpDnControl (Z_Pin, PUD_UP);

 pcf8591Setup(pinbase, address); //initialize PCF8591

 while (1){

 val_Z = digitalRead (Z_Pin); // read digital quality of axis Z

 val_Y = analogRead(A0); // read analog quality of axis X and Y

 val_X = analogRead(A1);

 printf (" val_X: %d , \ tval_Y: %d , \ tval_Z: %d \ n" , val_X, val_Y, val_Z);

 delay(100);

 }

 return 0;

}

In the code, configure Z_Pin to pull- up input mode. In while cycle of main function, use analogRead () to

read the value of axis X and Y and use digitalRead () to read the value of axis Z, then print them out.

 while (1){

 val_Z = digitalRead (Z_Pin); // read digital quality of axis Z

 val_Y = analogRead(A0); // read analog quality of axis X and Y

 val_X = analogRead(A1);

 printf (" val_X: %d , \ tval_Y: %d , \ tval_Z: %d \ n" , val_X, val_Y, val_Z);

 delay(100);

 }

http://www.freenove.com/
mailto:support@freenove.com

131 Chapter 12 Joystick

ȿ www.freenove.com

support@freenove.com ȿ

tȅǘƘƻƴ /ƻŘŜ мнΦмΦм WƻȅǎǘƛŎƪ

First observe the project result, and then analyze the code.

1. Use cd command to enter 12.1.1_Joystick directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/12.1.1_ Joystick

2. Use python command to execute python code "Joystick.py".

python Joystick.py

After Program is executed, the terminal window will print out the data of 3 axes X, Y, Z. And shifting the

Joystick or pressing it will make those data change.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

import RPi. GPIO as GPIO

import smbus

import time

address = 0x48

bus=smbus. SMBus(1)

cmd=0x40

Z_Pin = 12 #define pin for Z_Pin

def analogRead(chn): #read ADC value

 bus. write_byte (address, cmd+chn)

 value = bus. read_byte(address)

 value = bus. read_byte(address)

 #value = bus.read_by te_data(address,cmd+chn)

 return value

def analogWrite (value):

 bus. write_byte_data (address, cmd, value)

def setup():

 global p_Red, p_Green, p_Blue

 GPIO. setmode(GPIO. BOARD)

 GPIO. setup(Z_Pin, GPIO. IN, GPIO. PUD_UP) #set Z_Pin to pull - up mode

def loop():

 while True:

 val_Z = GPIO. input (Z_Pin) #read digital quality of axis Z

 val_Y = analogRead(0) #read analog quality of axis X and Y

 val_X = analogRead(1)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 12 Joystick 132 www.freenove.com ȿ

ȿ support@freenove.com

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 print ('value_X: %d , \ tvlue_Y: %d , \ tvalue_Z: %d' %(val_X, val_Y, val_Z))

 time. sleep(0.01)

def destroy ():

 bus. close ()

 GPIO. cleanup()

if __name__ == '__main__' :

 print ('Program is starting ... ')

 setup()

 try :

 loop()

 except KeyboardInter rupt :

 destroy ()

In the code, configure Z_Pin to pull- up input mode. In while cycle of loop, use analogRead () to read the

value of axis X and Y and use GPIO.input () to read the value of axis Z, then print them out.

 while True:

 val_Z = GPIO. input (Z_Pin) #read digital quality of axis Z

 val_Y = analogRead(1) #read analog quality of axis X and Y

 val_X = analogRead(2)

 print ('value_X: %d , \ tvlue_Y: %d , \ tvalue_Z: %d' %(val_X, val_Y, val_Z))

 time. sleep(0.01)

http://www.freenove.com/
mailto:support@freenove.com

133 Chapter 13 Motor & Driver

ȿ www.freenove.com

support@freenove.com ȿ

Chapter 13 Motor & Driver

In this chapter, we will learn some knowledge about DC motor and DC motor drive, and how to control the

speed and direction of motor.

Project 13.1 Control Motor with Potentiometer

In this project, a potentiometer is used to control motor. When the potentiometer is in the midpoint position,

the motor will stops rotating, and when away from the middle position, the motor speed increases. When

potentiometer is shifted to limited ends, the motor speed reaches maximum. When the potentiometer

position is at different side of middle position, the direction of motor is different.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

Breadboard power module x1

9V Battery (provided by yourself) & battery cable

Rotary potentiometer x1

Motor x1

Resistor 10k x2

PCF8591 x1

L293D

http://www.freenove.com/
mailto:support@freenove.com

Chapter 13 Motor & Driver 134 www.freenove.com ȿ

ȿ support@freenove.com

Component knowledge

Motor

Motor is a device that converts electrical energy into mechanical energy. Motor consists of two parts: stator

and rotor. When motor works, the stationary part is stator, and the rotating part is rotor. Stator is usually the

outer case of motor, and it has terminals to connect to the power. Rotor is usually the shaft of motor, and can

drive other mechanical devices to run. Diagram below is a small DC motor with two pins.

When motor get connected to the power supply, it will rotate in one direction. Reverse the polarity of power

supply, then motor rotates in opposite direction.

+ - - +

[нфо5

L293D is a chip integrated with 4- channel motor drive. You can drive a unidirectional motor with 4 ports or a

bi- directional motor with 2 port or a stepper motor.

http://www.freenove.com/
mailto:support@freenove.com

135 Chapter 13 Motor & Driver

ȿ www.freenove.com

support@freenove.com ȿ

Port description of L293D module is as follows:

Pin name Pin number Description

In x 2, 7, 10, 15 Channel x digital signal input pin

Out x 3, 6, 11, 14 Channel x output pin, input high or low level according to In x pin, get

connected to +Vmotor or 0V

Enable1 1 Channel 1 and channel 2 enable pin, high level enable

Enable2 9 Channel 3 and channel 4 enable pin, high level enable

0V 4, 5, 12, 13 Power cathode (GND)

+V 16 Positive electrode (VCC) of power supply, supply voltage 4.5~36V

+Vmotor 8 Positive electrode of load power supply, provide power supply for the Out

pin x, the supply voltage is +V~36V

For more details, please see datasheet.

When using L293D to drive DC motor, there are usually two kinds of connection.

Following connection uses one channel, and it can control motor speed through PWM, but the motor can

only rotate in one direction.

Following connection uses two channels: one channel outputs PWM wave, and another channel connects

GND, so you can control the speed of motor. When these two channel signals are exchanged, the current

direction of the motor can be reversed, and the motor will rotate in reverse direction. This can not only

control the speed of motor, but also can control the steering of motor.

In actual use, motor is usually connected to the channel 1 and 2, output different level to in1 and in2 to

control the rotation direction of the motor, and output PWM wave to Enable1 port to control the motor

rotation speed. Or, get motor connected to the channel 3 and 4, output different level to in3 and in4 to

control the motor's rotation direction, and output PWM wave to Enable2 pin to control the motor rotation

speed.

GND

GND

http://www.freenove.com/
mailto:support@freenove.com

Chapter 13 Motor & Driver 136 www.freenove.com ȿ

ȿ support@freenove.com

Circuit

When connecting the circuit, pay attention to that because the motor is a high- power component, do not

use the power provided by the RPi, which may do damage to your RPi. the logic circuit can be powered by

RPi power or external power supply which should have the common ground with RPi.

Schematic diagram

http://www.freenove.com/
mailto:support@freenove.com

137 Chapter 13 Motor & Driver

ȿ www.freenove.com

support@freenove.com ȿ

Hardware connection

Change the jumper cap

position to change supply

voltage for motor. Logic voltage supply

end (must select

3.3V)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 13 Motor & Driver 138 www.freenove.com ȿ

ȿ support@freenove.com

Code

In this project code, first read the ADC value, and then control the rotation direction and speed of the motor

according to the value of the ADC.

/ /ƻŘŜ моΦмΦм aƻǘƻǊ

First observe the project result, and then analyze the code.

1. Use cd command to enter 13.1.1_Motor directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/13.1.1_Motor

2. Use follo Motor.c Motor - -

option is needed.

gcc Motor.c o Motor lwiringPi lm - lpthread

3. Then .

sudo ./Motor

After the program is executed, shift the potentiometer, then the rotation speed and direction of the motor

will change with it. And when the potentiometer is turned to midpoint position, the motor stops running.

When away from the middle position, the motor speed will increase. When to both ends, motor speed reach

to maximum. When the potentiometer is turned to different side of the middle position, the motor will run

with different direction. Meanwhile, the terminal will print out ADC value of the potentiometer, the motor

direction and the PWM duty cycle used to control motor speed.

The following is the code:

1

2

3

4

5

6

7

8

9

#include <wiringP i.h>

#include <pcf8591.h>

#include <stdio.h>

#include <softPwm.h>

#include <math.h>

#include <stdlib.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

http://www.freenove.com/
mailto:support@freenove.com

139 Chapter 13 Motor & Driver

ȿ www.freenove.com

support@freenove.com ȿ

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

#define moto RPin1 2 // define the pin connected to L293D

#define moto RPin2 0

#define enablePin 3

// Map funct ion: map the value from a range of mapping to another range .

long map(long value, long fro mLow, long fromHigh, long toLow, long toHigh){

 return (toHigh- toLow)*(value- fromLow) / (fromHigh- fromLow) + toLow;

}

// motor function: determine the direction and speed of the motor according to the ADC

value to be input.

void motor(int ADC){

 int valu e = ADC - 128;

 if (value>0){

 digitalWrite (motoRPin1, HIGH);

 digitalWrite (motoRPin2, LOW);

 printf ("turn Forward... \ n");

 }

 else if (value<0){

 digitalWrite (motoRPin1, LOW);

 digitalWrite (motoRPin2, HIGH);

 printf ("turn Back... \ n");

 }

 else {

 digitalWrite (motoRPin1, LOW);

 digitalWrite (motoRPin2, LOW);

 printf ("Motor Stop... \ n");

 }

 softPwmWrite(enablePin, map(abs(value), 0, 128, 0, 255));

 printf ("The PWM duty cycle is %d%%\ n", abs(value)* 100/ 127);// print the PWM duty cycle .

}

int main(void){

 int value;

 if (wiringPiSetup () == - 1){ //when initialize wiring failed,print message to screen

 printf ("setup wiringPi failed !");

 return 1;

 }

 pinMode(enablePin , OUTPUT);// set mode for the pin

 pinMode(motoRPin1, OUTPUT);

 pinMode(motoRPin2, OUTPUT);

 softPwmCreate(enablePin, 0, 100);// define PWM pin

http://www.freenove.com/
mailto:support@freenove.com

Chapter 13 Motor & Driver 140 www.freenove.com ȿ

ȿ support@freenove.com

54

55

56

57

58

59

60

61

62

63

 pcf8591Setup(pinbase, address);// initialize PCF8591

 while (1){

 value = analogRead(A0); //read A0 pin

 printf ("ADC value : %d \ n", value);

 motor(value); // start the motor

 delay(100);

 }

 return 0;

}

We have been familiar with reading learn directly subfunction void motor(int ADC): first,

compare ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,

motoRPin1 outputs high level and motoRPin2 outputs low level to control motor to run with forward rotation

direction. When the current ADC value is lower, motoRPin1 outputs low level and motoRPin2 outputs high

level to control motor run with reversed direction. When the ADC value is equal to 128, motoRPin1 and

motoRPin2 output low level, then the motor stops. And then determine PWM duty cycle according to the

difference between ADC value and 128. Because the absolute difference value stays within 0- 128. We need

to use the map() subfunction mapping the difference value to range of 0- 255. Finally print out the duty cycle.

 void motor(int ADC){

 int value = ADC - 128;

 if (value>0){

 digitalWrite (motoRPin1, HIGH);

 digitalWrite (motoRPin2, LOW);

 printf ("turn Forward... \ n");

 }

 else if (value<0){

 digitalWrite (motoRPin1, LOW);

 digitalWrite (motoRPin2, HIGH);

 prin tf ("turn Back ward... \ n");

 }

 else {

 digitalWrite (motoRPin1, LOW);

 digitalWrite (motoRPin2, LOW);

 printf ("Motor Stop... \ n");

 }

 softPwmWrite(enablePin, map(abs(value), 0, 128, 0, 255));

 printf ("The PWM duty cycle is %d%%\ n" , abs(value)* 100/ 127);// print out PWM duty

cycle .

}

http://www.freenove.com/
mailto:support@freenove.com

141 Chapter 13 Motor & Driver

ȿ www.freenove.com

support@freenove.com ȿ

tȅǘƘƻƴ /ƻŘŜ моΦмΦм aƻǘƻǊ

First observe the project result, and then analyze the code.

1. Use cd command to enter 13.1.1_Motor directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/13.1.1_Motor

2. Motor.py

python Motor.py

After the program is executed, shift the potentiometer, then the rotation speed and direction of the motor

will change with it. And when the potentiometer is turned to midpoint position, the motor stops running.

When away from the middle position, the motor speed will increase. When to both ends, motor speed reach

to maximum. When the potentiometer is turned to different side of the middle position, the motor will run

with different direction. Meanwhile, the terminal will print out ADC value of the potentiometer, the motor

direction and the PWM duty cycle used to control motor speed.

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

import RPi. GPIO as GPIO

import smbus

import time

address = 0x48

bus=smbus. SMBus(1)

cmd=0x40

define the pin connected to L293D

motoRPin1 = 13

motoRPin2 = 11

enablePin = 15

def analogRead(chn):

 value = bus. read_byte_data(address, cmd+chn)

 return value

def analogWrite (value):

 bus. write_byte_data (address, cmd, value)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 13 Motor & Driver 142 www.freenove.com ȿ

ȿ support@freenove.com

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

def setup():

 global p

 GPIO. setmode(GPIO. BOARD) # set mode for pin

 GPIO. setup(motoRPin1, GPIO. OUT)

 GPIO. setup(motoRPin2, GPIO. OUT)

 GPIO. setup(enablePin, GPIO. OUT)

 p = GPIO. PWM(enablePin, 1000) # creat PWM

 p. start (0)

#mapNUM function: map the value from a range of mapping to another range.

def mapNUM(value, fromLow, fromHigh, toLow, toHigh):

 return (toHigh- toLow)*(value- fromLow) / (fromHigh- fromLow) + toLow

#motor function: determine the direction and speed of the motor according to the ADC

value t o be input.

def motor(ADC):

 value = ADC - 128

 if (value > 0):

 GPIO. output (motoRPin1, GPIO. HIGH)

 GPIO. output (motoRPin2, GPIO. LOW)

 print ('Turn Forward...')

 elif (value < 0):

 GPIO. output (motoRPin1, GPIO. LOW)

 GPIO. output (motoRPin2, GPIO. HIGH)

 print ('Turn Backward...')

 else :

 GPIO. output (motoRPin1, GPIO. LOW)

 GPIO. output (motoRPin2, GPIO. LOW)

 print ('Motor Stop...')

 p. start (mapNUM(abs(value), 0, 128, 0, 100))

 print ('The PWM duty cycle is %d%%\ n' %(abs(value)* 100/ 127)) #print PMW duty cycle.

def loop():

 while True:

 value = analogRead(0)

 print ('ADC Value : %d' %(value))

 motor(value)

 time. sleep(0.01)

def destroy ():

 bus. close ()

 GPIO. cle anup()

if __name__ == '__main__' :

http://www.freenove.com/
mailto:support@freenove.com

143 Chapter 13 Motor & Driver

ȿ www.freenove.com

support@freenove.com ȿ

64

65

66

67

68

69

 print ('Program is starting ... ')

 setup()

 try :

 loop()

 except KeyboardInterrupt :

 destroy ()

We have been familiar with read learn directly subfunction def motor(ADC) : first,

compare ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,

motoRPin1 outputs high level and motoRPin2 output low level to control motor to run with forward rotation

direction. When the current ADC value is lower, motoRPin1 outputs low level and motoRPin2 outputs high

level to control run with reversed direction. When the ADC value is equal to 128, make motoRPin1 and

motoRPin2 output low level, then the motor stops. And then determine PWM duty cycle according to the

difference between ADC value and 128. Because the absolute difference value stays within 0- 128. We need

to use the map () subfunction mapping the difference value to range of 0- 255. Finally print out the duty cycle.

 def motor(ADC):

 value = ADC - 128

 if (value > 0):

 GPIO. output (motoRPin1, GPIO. HIGH)

 GPIO. output (motoRPin2, GPIO. LOW)

 print ('Turn Forward...')

 elif (value < 0):

 GPIO. output (motoRPin1, GPIO. LOW)

 GPIO. output (motoRPin2, GPIO. HIGH)

 print ('Turn Backward...')

 else :

 GPIO. output (motoRPin1, GPIO. LOW)

 GPIO. output (motoRPin2, GPIO. LOW)

 print ('Motor Stop...')

 p. start (mapNUM(abs(value), 0, 128, 0, 100))

 print ('The PWM duty cycle is %d%%\ n' %(abs(value)* 100/ 127)) #print PMW duty cycle.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 14 Relay & Motor 144 www.freenove.com ȿ

ȿ support@freenove.com

Chapter 14 Relay & Motor

In this chapter, we will learn a kind of special switch module, Relay Module.

Project 14.1.1 Relay & Motor

In this project, we will use a push button to control a relay and drive the motor.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

Jumper

9V battery (prepared by yourself) & battery line

Breadboard extension x1

Resistor 10k x2

Resistor 1k x1

Resistor 220 x1

NPN

transistor x1

Relay x1

Motor x1

Push button x1

LED x1

Diode x1

http://www.freenove.com/
mailto:support@freenove.com

145 Chapter 14 Relay & Motor

ȿ www.freenove.com

support@freenove.com ȿ

Component knowledge

wŜƭŀȅ

Relay is a safe switch which can use low power circuit to control high power circuit. It consists of electromagnet

and contacts. The electromagnet is controlled by low power circuit and contacts is used in high power circuit.

When the electromagnet is energized, it will attract contacts.

The following is a principle diagram of common relay and the feature and circuit symbol of 5V relay used in

this project:

Diagram

Feature

Symbol

Pin 5 and pin 6 are connected to each other inside. When the coil pin3 and 4 get connected to 5V power

supply, pin 1 will be disconnected to pin 5&6 and pin 2 will be connected to pin 5&6. So pin 1 is called close

end, pin 2 is called open end.

LƴŘǳŎǘƻǊ

The unit of inductance(L) is the henry (H). 1H=1000mH, 1mH=1000 H.

Inductor is an energy storage device that converts electrical energy into magnetic energy. Generally, it consists

of winding coil, with a certain amount of inductance. Inductor will hinder the changing current passing through

the inductor. When the current passing through inductor increases, it will attempt to hinder the increasing

trend of current; and when the current passing through the inductor decreases, it will attempt to hinder the

decreasing trend of current. So the current passing through inductor is not transient.

The reference circuit for relay is as follows. The coil of relay can be equivalent to inductor, when the transistor

disconnects power supply of the relay, the current in the coil of the relay can't stop immediately, causing an

impact on power supply. So a parallel diode will get connected to both ends of relay coil pin in reversing

direction, then the current will pass through diode, avoiding the impact on power supply.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 14 Relay & Motor 146 www.freenove.com ȿ

ȿ support@freenove.com

Circuit

Pay attention to the power supply voltage needed for the components in circuit, in which the relay needs

power supply voltage 5V, and the motor needs 3.3V. Additionally, a LED is used as an indicator for the relay

(turned on or turned off).

Schematic diagram

http://www.freenove.com/
mailto:support@freenove.com

147 Chapter 14 Relay & Motor

ȿ www.freenove.com

support@freenove.com ȿ

Hardware connection

OFF
3.3V

http://www.freenove.com/
mailto:support@freenove.com

Chapter 14 Relay & Motor 148 www.freenove.com ȿ

ȿ support@freenove.com

Code

The project code is in the same logic as TableLamp. Press the button to driver the transistor conducted.

Because the relay and LED are connected in parallel, they will be opened at the same time. And if you press

the button again, they will be closed.

/ /ƻŘŜ мпΦмΦм wŜƭŀȅ

First observe the project result, and then analyze the code.

1. Use cd command to enter 14.1.1_Relay directory of C code.

cd ~/Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi/Code/C_Code/14.1.1_Relay

2. Use following command to compile "Relay.c" and generate executable file "Relay".

gcc Relay.c o Relay lwiringPi

3. Run the generated file "Relay".

sudo ./Relay

After the program is executed, press the button, then the relay is opened, the Motor starts to rotate and LED

is turned on. If you press the button again, the relay is closed, the Motor stops running, and the LED is turned

off.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

#include <wiringPi.h>

#include <stdio.h>

#define relayPin 0 //define the relayPin

#define buttonPin 1 //define the buttonPin

int relayState =LOW; //stor e the State of relay

int buttonState =HIGH; //store the State of button

int lastbuttonState =HIGH;//store the lastState of button

long lastChangeTime; //store the change time of button state

long captureTime=50; //set the button state stable time

int reading ;

int main(void)

{

 if (wiringPiSetup () == - 1){ //when initialize wiring fairelay,print message to screen

 printf (" setup wiringPi fairelay ! ");

 return 1;

 }

 printf (" Program is starting... \ n");

 pinMode(relayPin , OUTPUT);

 pinMode(buttonPin , INPUT);

 pullUpDnControl (buttonPin , PUD_UP); //pull up to high level

 while (1){

 reading = digitalRead (buttonPin); //read the current state of button

 if (reading != lastbuttonState){ //if the button state has changed ,record the

time point

 lastChangeTime = millis ();

http://www.freenove.com/
mailto:support@freenove.com

149 Chapter 14 Relay & Motor

ȿ www.freenove.com

support@freenove.com ȿ

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

 }

 //if changing - state of the button last beyond the time we set,we considered that

 //the current button state is an effective change rather than a buffeting

 if (millis () - lastChangeTime > captureTime){

 //if button state is changed ,update the data.

 if (reading != buttonState){

 buttonState = reading ;

 //if the state is low ,the action is pressing

 if (buttonState == LOW){

 printf (" Button is pressed! \ n");

 relayState = ! relayState ;

 if (relayState){

 printf (" turn on relay ... \ n");

 }

 else {

 printf (" turn off relay ... \ n");

 }

 }

 //if the state is high ,the action is releasing

 else {

 printf (" Button is released! \ n");

 }

 }

 }

 digitalWrite (relayPin , relayState);

 lastbuttonState = reading ;

 }

 return 0;

}

The code is in the same logic as TableLamp code above.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 14 Relay & Motor 150 www.freenove.com ȿ

ȿ support@freenove.com

tȅǘƘƻƴ /ƻŘŜ мпΦмΦм wŜƭŀȅ

First observe the project result, and then analyze the code.

1. Use cd command to enter 14.1.1_Relay directory of Python code.

cd ~/Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/14.1.1_Relay

2. Use python command to execute code "Relay.py".

python Relay.py

After the program is executed, press the button, then the relay is opened, the Motor starts to rotate and LED

is turned on. If you press the button again, the relay is closed, the Motor stops running, and the LED is turned

off.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

import RPi. GPIO as GPIO

import time

relayPin = 11 # define the relayPin

buttonPin = 12 # define the buttonPin

debounceTime = 50

def setup():

 print ('Program is starting...')

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(relayPin , GPIO. OUT) # Set relayPin's mode is output

 GPIO. setup(buttonPin , GPIO. IN)

def loop():

 relayState = False

 lastChangeTime = round(time. time()* 1000)

 buttonState = GPIO. HIGH

 lastButtonState = GPIO. HIGH

 reading = GPIO. HIGH

 while True:

 reading = GPIO. input (buttonPin)

 if reading != lastButtonState :

 lastC hangeTime = round(time. time()* 1000)

 if ((round(time. time()* 1000) - lastChangeTime) > debounceTime):

 if reading != buttonState :

 buttonState = reading ;

 if buttonState == GPIO. LOW:

 print ("Button is pressed!")

 relayState = not relayState

 if relayState :

 print ("Turn on relay ...")

 else :

 print ("Turn off relay ... ")

 els e :

http://www.freenove.com/
mailto:support@freenove.com

151 Chapter 14 Relay & Motor

ȿ www.freenove.com

support@freenove.com ȿ

35

36

37

38

39

40

41

42

43

44

45

46

47

48

 print ("Button is released!")

 GPIO. output (relayPin , relayState)

 lastButtonState = reading

def destroy ():

 GPIO. output (relayPin , GPIO. LOW) # relay off

 GPIO. cleanup() # Release resourc e

if __name__ == '__main__' : # Program start from here

 setup()

 try :

 loop()

 except KeyboardInterrupt :

 destroy ()

The code is in the same logic as TableLamp code above.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo 152 www.freenove.com ȿ

ȿ support@freenove.com

Chapter 15 Servo

We have learned how to control the speed and steering of the motor before. In this chapter, we will learn a

kind of motor that can rotate to a specific angle, servo.

Project 15.1 Servo Sweep

First, let's learn how to make the servo rotate.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

Jumper

Servo x1

http://www.freenove.com/
mailto:support@freenove.com

153 Chapter 15 Servo

ȿ www.freenove.com

support@freenove.com ȿ

Component knowledge

{ŜǊǾƻ

Servo is an auto- control system, consisting of DC motor, reduction gear, sensor and control circuit. Usually,

it can rotate in the range of 180 degrees. Servo can output larger torque and is widely used in model airplane,

robot and so on. It has three lines, including two for electric power line positive (2- VCC, red), negative (3-

GND, brown), and the signal line (1- Signal, orange).

We use 50Hz PWM signal with a duty cycle in a certain range to drive the servo. The lasting time 0.5ms- 2.5ms

of PWM single cycle high level corresponds to the servo angle 0 degrees - 180 degree linearly. Part of the

corresponding values are as follows:

High level time Servo angle

0.5ms 0 degree

1ms 45 degree

1.5ms 90 degree

2ms 135 degree

2.5ms 180 degree

When you change the servo signal, servo will rotate to the designated position.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo 154 www.freenove.com ȿ

ȿ support@freenove.com

Circuit

Pay attention to the power supply for stepping motor is 5v, and don't confuse the line sequence.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

155 Chapter 15 Servo

ȿ www.freenove.com

support@freenove.com ȿ

Code

In this project, we make the servo rotate from 0 degrees to 180 degrees, and then from 180 degrees to 0

degrees.

/ /ƻŘŜ мрΦмΦм {ǿŜŜǇ

First observe the project result, and then analyze the code.

1. Use cd command to enter 15.1.1_Sweep directory of C code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/15.1.1_Sweep

2. Use following command to compile "Sweep.c" and generate executable file "Sweep".

gcc Sweep.c o Sweep lwiringPi

3. Run the generated file "Sweep".

sudo ./Sweep

After the program is executed, the servo will rotate from 0 degrees to 180 degrees, and then from 180 degrees

to 0 degrees, circularly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#include <wiringPi.h>

#include <softPwm.h>

#include <stdio.h>

#define OFFSET_MS 3 // Defin e the unit of servo p ulse offset: 0.1ms

#define SERVO_MIN_MS 5+OFFSET_MS // define the pulse duration for m inimum angle of

servo

#define SERVO_MAX_MS 25+OFFSET_MS // define the pulse duration for max imum angle of

servo

#define servoPin 1 // define the GPIO number connected to servo

long map(long value, long fromLow, long fromHigh, long toLow, long toHigh){

 return (toHigh- toLow)*(value- fromLow) / (fromHigh- fromLow) + toLow;

}

void servoInit (int pin){ // i nitialization function for servo PWM pin

 softPwmCreate(pin , 0, 200);

}

void servoWrite (int pin , int angle){ // Specif a certain rotation angle (0- 180) for the

servo

 if (angle > 180)

 angle = 180;

 if (angle < 0)

 angle = 0;

 softPwmWrite(pin , map(angle, 0, 180, SERVO_MIN_MS, SERVO_MAX_MS));

}

void servoWriteMS(int pin , int ms){ // specific the unit for pulse(5 - 25ms) with

specific duration output by servo pin : 0.1ms

 if (ms > SERVO_MAX_MS)

 ms = SERVO_MAX_MS;

http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo 156 www.freenove.com ȿ

ȿ support@freenove.com

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

 if (ms < SERVO_MIN_MS)

 ms = SERVO_MIN_MS;

 softPwmWrite(pin , ms);

}

int main(void)

{

 int i ;

 if (wiringPiSetup () == - 1){ //when initialize wiring faiservo,print message to screen

 printf (" setup wiringPi faiservo ! ");

 return 1;

 }

 printf (" Program is starting ... \ n");

 servoInit (servoPin); // initialize PWM pin of servo

 while (1){

 for (i =SERVO_MIN_MS; i <SERVO_MAX_MS; i ++){ // make servo rotate from minimum angle

to maximum angle

 servoWriteMS(servoPin , i);

 delay(10);

 }

 delay(500);

 for (i =SERVO_MAX_MS; i >SERVO_MIN_MS; i --){ // make servo rotate from maximum angle

to minimum angle

 servoWriteMS(servoPin , i);

 delay(10);

 }

 delay(500);

 }

 return 0;

}

50 Hz pulse, namely cycle for 20ms, is required to control Servo. In function softPwmCreate (int pin, int

initialValue, int pwmRange), the unit of third parameter pwmRange is 100US, namely 0.1ms. In order to get

the PWM with cycle of 20ms, the pwmRange shoulde be set to 200. So in subfunction of servoInit (), we create

a PWM pin with pwmRange 200.

 void servoInit (int pin){ //initialization function for servo PWM pin

 softPwmCreate(pin , 0, 200);

}

As 0- 180 degrees of servo corresponds to PWM pulse width 0.5- 2.5ms, with PwmRange 200 and unit 0.1ms.

So, in function softPwmWrite (int pin, int value), the scope 5- 25 of parameter value corresponds to 0- 180

degrees the number writen in subfunction servoWriteMS () should be within the range

of 5- 25. However, in practice, due to the manufacture error of each servo, pulse width will also have deviation.

So we define a minimum pulse width and a maximum one and an error offset.

http://www.freenove.com/
mailto:support@freenove.com

157 Chapter 15 Servo

ȿ www.freenove.com

support@freenove.com ȿ

 #define OFFSET_MS 3 // Defin e the unit of servo p ulse offset: 0.1ms

#define SERVO_MIN_MS 5+OFFSET_MS // define t he pulse duration for minimum angle of

servo

#define SERVO_MAX_MS 25+OFFSET_MS // define the pulse duration for max imum angle of

servo

ŀŀ

void servoWriteMS(int pin , int ms){

 if (ms > SERVO_MAX_MS)

 ms = SERVO_MAX_MS;

 if (ms < SERVO_MIN_MS)

 ms = SERVO_MIN_MS;

 softPwmWrite(pin , ms);

}

In subfunction servoWrite (), input directly angle (0- 180 degrees), and map the angle to the pulse width and

then output it.

 void servoWrite (int pin , int angle){ // Specif a certain rotation angl e (0 - 180) for the

servo

 if (angle > 180)

 angle = 180;

 if (angle < 0)

 angle = 0;

 softPwmWrite(pin , map(angle, 0, 180, SERVO_MIN_MS, SERVO_MAX_MS));

}

Finally, in the "while" cycle of main function, use two "for" cycle to make servo rotate from 0 degrees to 180

degrees, and then from 180 degrees to 0 degrees.

 while (1){

 for (i =SERVO_MIN_MS; i <SERVO_MAX_MS; i ++){ // make servo rotate from minimum angle

to maximum angle

 servoWriteMS(servoPin , i);

 delay(10);

 }

 delay(500);

 for (i =SERVO_MAX_MS; i >SERVO_MIN_MS; i --){ // make servo rotate from maximum angle

to minimum angle

 servoWriteMS(servoPin , i);

 delay(10);

 }

 delay(500);

 }

http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo 158 www.freenove.com ȿ

ȿ support@freenove.com

tȅǘƘƻƴ /ƻŘŜ мрΦмΦм {ǿŜŜǇ

First observe the project result, and then analyze the code.

1. Use cd command to enter 15.1.1_Sweep directory of Python code.

cd ~/ Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/15.1.1_Sweep

2. Use python command to execute code "Sweep.py".

python Sweep.py

After the program is executed, the servo will rotate from 0 degrees to 180 degrees, and then from 180 degrees

to 0 degrees, circularly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

import RPi. GPIO as GPIO

import time

OFFSE_DUTY = 0.5 #define pulse offset of servo

SERVO_MIN_DUTY = 2.5+OFFSE_DUTY #define pulse duty cycle for minimum angle of servo

SERVO_MAX_DUTY = 12.5+OFFSE_DUTY #define pulse duty cycle for maximum angle of servo

servoPin = 12

def map(value, fromLow, fromHigh, toLow, toHigh):

 return (toHigh- toLow)*(value- fromLow) / (fromHigh- fromLow) + toLow

def setup():

 global p

 GPIO. setmode(GPIO. BOARD) # Numbers GPIOs by physical location

 GPIO. setup(servoPin, GPIO. OUT) # Set servoPin's mode is output

 GPIO. output (servoPin, GPIO. LOW) # Set servoPin to low

 p = GPIO. PWM(servoPin , 50) # set Frequece to 50Hz

 p. start (0) # Duty Cycle = 0

def servoWrite (angle): # make the servo rotate to specific angle (0 - 180 degrees)

 if (angle<0):

 angle = 0

 elif (angle > 180):

 angle = 180

 p. ChangeDutyCycle(map(angle, 0, 180, SERVO_MIN_DUTY, SERVO_MAX_DUTY)) #map the angle to

duty cycle and output it

def loop():

 while True:

 for dc in range(0, 181, 1): #make servo rotate from 0 to 180 deg

 servoWrite (dc) # Write to servo

 time. sleep(0.001)

 time. sleep(0.5)

 for dc in range(180, - 1, - 1): #make servo rotate from 180 to 0 deg

http://www.freenove.com/
mailto:support@freenove.com

159 Chapter 15 Servo

ȿ www.freenove.com

support@freenove.com ȿ

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

 servoWrite (dc)

 time. sleep(0.001)

 time. sleep(0.5)

def destroy ():

 p. stop()

 GPIO. cleanup()

if __name__ == '__main__' : #Program start from here

 print ('Program is starting...')

 setup()

 try :

 loop()

 except KeyboardInterrupt : # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy ()

50 Hz pulse, namely cycle for 20ms, is required to control Servo. So we need set PWM frequency of servoPin

to 50Hz.

 p = GPIO. PWM(servoPin, 50) # Set Frequency to 50Hz

As 0- 180 degrees of servo corresponds to PWM pulse width 0.5- 2.5ms within cycle 20ms and to duty cycle

2.5%- 12.5%. In subfunction servoWrite (angle), map the angle to duty cycle to output the PWM, then the servo

will rotate a specific angle. However, in practice, due to the manufacture error of each servo, pulse width will

also have deviation. So we define a minimum pulse width and a maximum one and an error offset.

 OFFSE_DUTY = 0.5 #define pulse offset of servo

SERVO_MIN_DUTY = 2.5+OFFSE_DUTY #define pulse duty cycle for minimum angle of servo

SERVO_MAX_DUTY = 12.5+OFFSE_DUTY #define pulse duty cycle for maximum angle of servo

def servoWrite (angle): #make the servo rotate to specific angle (0- 180 degrees)

 if (angle<0):

 angle = 0

 elif (angle > 180):

 angle = 180

 p. ChangeDutyCycle(map(angle, 0, 180, SERVO_MIN_DUTY, SERVO_MAX_DUTY))

http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo 160 www.freenove.com ȿ

ȿ support@freenove.com

Finally, in the "while" cycle of main function, use two "for" cycle to make servo rotate from 0 degrees to 180

degrees, and then from 180 degrees to 0 degrees.

 def loop():

 while True:

 for dc in range(0, 181, 1): #make servo rotate from 0£to 180£

 servoWrite (dc) # Write to servo

 time. sleep(0.001)

 time. sleep(0.5)

 for dc in range(180, - 1, - 1): #make servo rotate from 180£to 0£

 servoWrite (dc)

 time. sleep(0.001)

 time. sleep(0.5)

http://www.freenove.com/
mailto:support@freenove.com

161 Chapter 16 Stepping Motor

ȿ www.freenove.com

support@freenove.com ȿ

Chapter 16 Stepping Motor

We have learned DC motor and servo before: the DC motor can rotate constantly but we can not make it

rotate to a specific angle. On the contrary, the ordinary servo can rotate to a certain angle but can not rotate

constantly. In this chapter, we will learn a motor which can rotate not only constantly, but also to a specific

angle, stepping motor. Using stepping motor can achieve higher accuracy of mechanical motion easily.

Project 16.1 Stepping Motor

In this project, we will learn how to drive stepping motor, and understand its working principle.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

Jumper

Stepping Motor x1

ULN2003 Stepping motorDriver x1

http://www.freenove.com/
mailto:support@freenove.com

Chapter 16 Stepping Motor 162 www.freenove.com ȿ

ȿ support@freenove.com

Component knowledge

{ǘŜǇǇƛƴƎ aƻǘƻǊ

Stepping motor is an open- loop control device which converts the electric pulse signal into angular

displacement or linear displacement. In non- overload condition, the speed of the motor and the location of

the stop depends only on the pulse signal frequency and pulse number, and not affected by the load changes.

A small four- phase deceleration stepping motor is shown as follows:

The schematic diagram of four- phase stepping motor is shown below:

The outside piece is the stator and the inside is the rotor of the motor. There are a certain number of coils,

usually integer multiple of phases number, in the stator and when powered on, an electromagnet will be

formed to attract a convex part (usually iron or permanent magnet) of the rotor. Therefore, the electric

motor can be driven by conducting the coils on stator orderly.

http://www.freenove.com/
mailto:support@freenove.com

163 Chapter 16 Stepping Motor

ȿ www.freenove.com

support@freenove.com ȿ

A common driving process is as follows:

In the course above, the stepping motor rotates a certain angle once, which is called a step. By controlling

the number of rotation steps, you can control the stepping motor rotation angle. By controlling the time

between two steps, you can control the stepping motor rotation speed. When rotating clockwise, the order

of coil powered on is: AĄBĄCĄDĄAĄ d the rotor will rotate in accordance with the order, step by

step down, called four steps four pats. If the coils is powered on in the reverse order, DĄCĄBĄAĄDĄ

the rotor will rotate in anti- clockwise direction.

Stepping motor has other control methods, such as connect A phase, then connect A B phase, the stator will

be located in the middle of the A B, only a half- step. This way can improve the stability of stepping motor,

and reduce noise, the sequence of coil powered on is: AĄABĄBĄBCĄCĄCDĄDĄDAĄAĄ the rotor

will rotate in accordance with the order, a half step by a half step, called four step eight pat. Equally, if the coil

is powered on in reverse order, the stepping motor will rotate in reverse rotation.

The stator of stepping motor we use has 32 magnetic poles, so a circle needs 32 steps. The output shaft of

the stepping motor is connected with a reduction gear set, and the reduction ratio is 1/64. So the final output

shaft rotates a circle requiring a 32*64=2048 step.

http://www.freenove.com/
mailto:support@freenove.com

