

Free your innovation

Freenove is an open-source electronics platform.

www.freenove.com

Warning

When you purchase or use Freenove RFID Starter Kit for Raspberry Pi, please note the following:

 This product contains small parts. Swallowing or improper operation can cause serious infections and

death. Seek immediate medical attention when the accident happened.

 Do not allow children under 3 years old to play with or near this product. Please place this product in

where children under 3 years of age cannot reach.

 Do not allow children lack of ability of safe to use this product alone without parental care.

 Never use this product and its parts near any AC electrical outlet or other circuits to avoid the potential

risk of electric shock.

 Never use this product near any liquid and fire.

 Keep conductive materials away from this product.

 Never store or use this product in any extreme environments such as extreme hot or cold, high humidity

and etc.

 Remember to turn off circuits when not in use this product or when left.

 Do not touch any moving and rotating parts of this product while they are operating.

 Some parts of this product may become warm to touch when used in certain circuit designs. This is

normal. Improper operation may cause excessively overheating.

 Using this product not in accordance with the specification may cause damage to the product.

About

Freenove is an open-source electronics platform. Freenove is committed to helping customer quickly realize

the creative idea and product prototypes, making it easy to get started for enthusiasts of programing and

electronics and launching innovative open source products. Our services include:

 Electronic components and modules

 Learning kits for Arduino

 Learning kits for Raspberry Pi

 Learning kits for Technology

 Robot kits

 Auxiliary tools for creations

Our code and circuit are open source. You can obtain the details and the latest information through visiting

the following web sites:

http://www.freenove.com

https://github.com/freenove

Your comments and suggestions are warmly welcomed, and please send them to the following email address:

support@freenove.com

http://www.freenove.com/
https://github.com/freenove
mailto:support@freenove.com

References

You can download the sketches and references used in this product in the following websites:

http://www.freenove.com

https://github.com/freenove

If you have any difficulties, you can send email to technical support for help.

The references for this product is named Freenove RFID Starter Kit for Raspberry Pi, which includes the

following folders and files:

 Datasheet Datasheet of electronic components and modules

 Code Code for project

 Readme.txt Instructions

Support

Freenove provides free and quick technical support, including but not limited to:

 Quality problems of products

 Problems in using products

 Questions for learning and technology

 Opinions and suggestions

 Ideas and thoughts

Please send email to:

support@freenove.com

On working day, we usually reply to you within 24 hours.

Copyright

Freenove reserves all rights to this book. No copies or plagiarizations are allowed for the purpose of

commercial use.

The code and circuit involved in this product are released as Creative Commons Attribution ShareAlike 3.0.

This means you can use them on your own derived works, in part or completely, as long as you also adopt

the same license. Freenove brand and Freenove logo are copyright of Freenove Creative Technology Co., Ltd

and cannot be used without formal permission.

http://www.freenove.com/
https://github.com/freenove
mailto:support@freenove.com

I Contents █ www.freenove.com

Contents

Contents .. I

Preface .. 1

Raspberry Pi .. 2

Install the System .. 8

Component List ... 8

Optional Components ... 10

Raspbian System ... 12

Remote desktop & VNC ... 15

Chapter 0 Preparation .. 25

Install WiringPi ... 25

Obtain the Project Code ... 27

Python2 & Python3 .. 28

Code Editor ... 30

GPIO .. 35

GPIO Extension Board ... 39

Breadboard Power Module ... 40

Next ... 41

Chapter 1 LED ... 42

Project 1.1 Blink ... 42

Chapter 2 Button & LED .. 50

Project 2.1 Button & LED .. 50

Project 2.2 MINI table lamp ... 55

Chapter 3 LEDBar Graph ... 61

Project 3.1 Flowing Water Light ... 61

Chapter 4 Analog & PWM .. 66

Project 4.1 Breathing LED ... 66

Chapter 5 RGBLED ... 72

Project 5.1 Colorful LED .. 72

Chapter 6 Buzzer ... 78

Project 6.1 Doorbell ... 78

http://www.freenove.com/

II Contents www.freenove.com █

Project 6.2 Alertor ... 84

Chapter 7 PCF8591 ... 89

Project 7.1 Read the Voltage of Potentiometer .. 89

Chapter 8 Potentiometer & LED 100

Project 8.1 Soft Light ... 100

Chapter 9 Potentiometer & RGBLED 105

Project 9.1 Colorful Light ... 105

Chapter 10 Photoresistor & LED 112

Project 10.1 NightLamp ... 112

Chapter 11 Thermistor ... 119

Project 11.1 Thermometer .. 119

Chapter 12 Joystick ... 126

Project 12.1 Joystick .. 126

Chapter 13 Motor & Driver .. 133

Project 13.1 Control Motor with Potentiometer .. 133

Chapter 14 Relay & Motor .. 144

Project 14.1.1 Relay & Motor ... 144

Chapter 15 Servo ... 152

Project 15.1 Servo Sweep .. 152

Chapter 16 Stepping Motor 161

Project 16.1 Stepping Motor .. 161

Chapter 17 74HC595 & LEDBar Graph 172

Project 17.1 Flowing Water Light .. 172

Chapter 18 74HC595 & 7-segment display. 180

Project 18.1 7-segment display. ... 180

Project 18.2 4-Digit 7-segment display ... 187

Chapter 19 74HC595 & LED Matrix 200

Project 19.1 LED Matrix .. 200

Chapter 20 LCD1602 .. 212

Project 20.1 I2C LCD1602 .. 212

http://www.freenove.com/

III Contents █ www.freenove.com

Chapter 21 Hygrothermograph DHT11 222

Project 21.1 Hygrothermograph ... 222

Chapter 22 Matrix Keypad .. 229

Project 22.1 Matrix Keypad ... 229

Chapter 23 Ultrasonic Ranging 239

Project 23.1 Ultrasonic Ranging .. 239

Chapter 24 RFID ... 247

Project 24.1 RFID .. 247

Chapter 25 WebIOPi & IOT .. 266

Project 25.1 Remote LED ... 266

What's next? .. 271

http://www.freenove.com/

1 Preface

█ www.freenove.com

support@freenove.com █

Preface

If you want to become a maker, you may have heard of Raspberry Pi or Arduino before. If not, it doesn’t

matter. Through referencing this tutorial, you can be relaxed in using Raspberry Pi to create dozens of

electronical interesting projects, and gradually realize the fun of using Raspberry Pi to complete creative works.

Raspberry Pi and Arduino have a lot of fans in the world. They are keen to exploration, innovation and DIY

and they contributed a great number of high-quality open source code, circuit and rich knowledge base. So

we can realize our own creativity more efficiently by using these free resource. Of course, you can also

contribute your own strength to the resource.

Raspberry Pi, different from Arduino, is more like a control center with a complete operating system, which

can deal with more tasks at the same time. Of course, you can also combine the advantages of them to make

something creative.

Usually, a Raspberry Pi project consists of code and circuit. If you are familiar with computer language and

very interested in the electronic module. Then this tutorial is very suitable for you. It will, from easy to difficult,

explain the Raspberry Pi programming knowledge, the use of various types of electronic components and

sensor modules and their operation principle. And we assign scene applications for most of the module.

We provide code of both C and Python language versions for each project, so, whether you are a C language

user or a Python language user, you are able to easily grasp the code in this tutorial. The supporting kit,

contains all the electronic components and modules needed to complete these projects. After completing all

projects in this tutorial, you can also use these components and modules to achieve your own creativity, like

smart home, smart car and robot.

Additionally, if you have any difficulties or questions about this tutorial and the kit, you can always ask us for

quick and free technical support.

http://www.freenove.com/
mailto:support@freenove.com

Raspberry Pi 2 www.freenove.com █

█ support@freenove.com

Raspberry Pi

Raspberry Pi (called RPi, RPI, RasPi, the text these words will be used alternately later), a micro-computer with

size of a card, quickly swept the world since its debut. It is widely used in desktop workstation, media center,

smart home, robots, and even the servers, etc. It can do almost anything, which continues to attract fans to

explore it. Raspberry Pi used to be running in Linux system and along with the release of windows 10 IoT. We

can also run it in Windows. Raspberry Pi (with interfaces USB, network, HDMI, camera, audio, display and

GPIO), as a microcomputer, can be running in command line mode and desktop system mode. Additionally,

it is easy to operate just like Arduino, and you can even directly operate the GPIO of CPU.

So far, Raspberry Pi has developed to the third generation. Changes in versions are accompanied by increase

and upgrades in hardware. A type and B type, the first generation of products, have been stopped due to

various reasons. Other versions are popular and active and the most important is that they are consistent in

the order and number of pins, which makes the compatibility of peripheral devices greatly enhanced between

different versions.

Here are some practicality pictures and model diagrams of Raspberry Pi:

Practicality picture of Raspberry Pi 3 Model B+：

Model diagram of Raspberry Pi 3 Model B+：

http://www.freenove.com/
mailto:support@freenove.com

3 Raspberry Pi

█ www.freenove.com

support@freenove.com █

Practicality picture of Raspberry Pi 3 Model B:

Model diagram of Raspberry Pi 3 Model B:

Practicality picture of Raspberry Pi 2 Model B:

Model diagram of Raspberry Pi 2 Model B:

http://www.freenove.com/
mailto:support@freenove.com

Raspberry Pi 4 www.freenove.com █

█ support@freenove.com

Practicality picture of Raspberry Pi 1 Model B+:

Model diagram of Raspberry Pi 1 Model B+:

Practicality picture of Raspberry Pi 1 Model A+:

Model diagram of Raspberry Pi 1 Model A+:

http://www.freenove.com/
mailto:support@freenove.com

5 Raspberry Pi

█ www.freenove.com

support@freenove.com █

Practicality picture of Raspberry Pi Zero W:

Model diagram of Raspberry Pi Zero W:

Practicality picture of Raspberry Pi Zero：

Model diagram of Raspberry Pi Zero：

http://www.freenove.com/
mailto:support@freenove.com

Raspberry Pi 6 www.freenove.com █

█ support@freenove.com

Hardware interface diagram of RPi 3B+/3B/2B/1B+ is shown below:

Hardware interface diagram of RPi A+ is shown below:

GPIO

Connector

Display

Connector

Power

Connector

HDMI

Connector

Camera

Connector

Audio

Connector

Ethernet

Connector

USB

Connector

GPIO

Connector

Display

Connector

Power

Connector

HDMI

Connector

Camera

Connector

Audio

Connector

USB

Connector

http://www.freenove.com/
mailto:support@freenove.com

7 Raspberry Pi

█ www.freenove.com

support@freenove.com █

Hardware interface diagram of RPi Zero/Zero W is shown below:

GPIO

Connector

Power

Connector

HDMI

Connector

Camera

Connector

USB

Connector

http://www.freenove.com/
mailto:support@freenove.com

Install the System 8 www.freenove.com █

█ support@freenove.com

Install the System

Firstly, install a system for your RPi.

Component List

Required Components

Any Raspberry Pi

5V/2.5A Power Adapter. Different versions of

Raspberry Pi have different power requirements.

Micro USB Cable x1

Micro SD Card(TF Card)x1, Card Reader x1

http://www.freenove.com/
mailto:support@freenove.com

9 Install the System

█ www.freenove.com

support@freenove.com █

Power requirement of different versions of Raspberry Pi is shown in following table:

Product Recommended

PSU current

capacity

Maximum total USB

peripheral current draw

Typical bare-board active

current consumption

Raspberry Pi

Model A

700mA 500mA 200mA

Raspberry Pi

Model B

1.2A 500mA 500mA

Raspberry Pi

Model A+

700mA 500mA 180mA

Raspberry Pi

Model B+

1.8A 600mA/1.2A (switchable) 330mA

Raspberry Pi 2

Model B

1.8A 600mA/1.2A (switchable) 350mA

Raspberry Pi 3

Model B

2.5A 1.2A 400mA

Raspberry Pi 3

Model B+

2.5A

Raspberry Pi

Zero W

1.2A Limited by PSU, board, and

connector ratings only.

150mA

Raspberry Pi

Zero

1.2A Limited by PSU, board, and

connector ratings only

100mA

For more details, please refer to https://www.raspberrypi.org/help/faqs/#powerReqs

In addition, RPi also needs a network cable used to connect it to wide area network.

All of these components are necessary. Among them, the power supply is required at least 5V/2.5A, because

lack of power supply will lead to many abnormal problems, even damage to your RPi. So power supply with

5V/2.5A is highly recommend. SD Card Micro (recommended capacity 16GB or more) is a hard drive for RPi,

which is used to store the system and personal files. In later projects, the components list with a RPi will

contains these required components, using only RPi as a representative rather than presenting details.

http://www.freenove.com/
mailto:support@freenove.com
https://www.raspberrypi.org/help/faqs/#powerReqs

Install the System 10 www.freenove.com █

█ support@freenove.com

Optional Components

Under normal circumstances, there are two ways to login to Raspberry Pi: using independent monitor, or

remote desktop to share a monitor with your PC.

Required Accessories for Monitor

If you want to use independent monitor, mouse and keyboard, you also need the following accessories.

1.Display with HDMI interface

2.Mouse and Keyboard with USB interface

As to Pi Zero and Pi Zero W, you also need the following accessories.

1. Mini-HDMI to HDMI converter&wire.

2. Micro-USB to USB-A Receptacles converter&wire (Micro USB OTG wire).

3. USB HUB.

4. USB transferring to Ethernet interface or USB Wi-Fi receiver.

For different Raspberry Pi, the optional items are slightly different. But all of their aims are to convert the

special interface to standard interface of standard Raspberry Pi.

 Pi Zero Pi Zero W Pi A+ Pi B+/2B Pi 3B/3B+

Monitor Yes Yes Yes Yes Yes

Mouse Yes Yes Yes Yes Yes

Keyboard Yes Yes Yes Yes Yes

Mini-HDMI to HDMI

converter&wire
Yes Yes No No No

Micro-USB to USB-A

Receptacles

converter&wire

(Micro USB OTG wire)

Yes Yes No No No

USB HUB Yes Yes Yes No No

USB transferring to

Ethernet interface

select one

from two or

select two

from two

optional
select one

from two or

select two

from two

Internal

Integration Internal

Integration USB Wi-Fi receiver Internal

Integration
optional

http://www.freenove.com/
mailto:support@freenove.com

11 Install the System

█ www.freenove.com

support@freenove.com █

Required Accessories for Remote Desktop

If you don't have an independent monitor, or you want to use a remote desktop, first you need to login to

Raspberry Pi through SSH, then open the VNC or RDP service. So you need the following accessories.

 Pi Zero Pi Zero W Pi A+ Pi B+/2B Pi 3B/3B+

Micro-USB to USB-A

Receptacles

converter&wire (Micro

USB OTG wire)

Yes Yes No NO

USB transferring to

Ethernet interface

Yes Yes Yes

http://www.freenove.com/
mailto:support@freenove.com

Install the System 12 www.freenove.com █

█ support@freenove.com

Raspbian System

Tool and System image

Software Tool

A tool Disk Imager Win32 is required to write system. You can download and install it through visiting the

web site: https://sourceforge.net/projects/win32diskimager/

Selecting System

Visit RPi official website (https://www.RaspberryPi.org/), click “Downloads” and choose to download

“RASPBIAN”. RASPBIAN supported by RPI is an operating system based on Linux, which contains a number of

contents required for RPi. We recommended RASPBIAN system to beginners. All projects in this tutorial are

operated under the RASPBIAN system.

After download, extract file with suffix (.img). Preparation is ready to start making the system.

http://www.freenove.com/
mailto:support@freenove.com
https://sourceforge.net/projects/win32diskimager/
https://www.raspberrypi.org/

13 Install the System

█ www.freenove.com

support@freenove.com █

Write System to Micro SD Card

First, put your Micro SD card into card reader and connect it to USB port of PC. Then open Win32 disk imager,

choose the correct letter of your Micro SD Card (here is “J”), open the extracted “.img” file and then click the

"Write".

Step1. choose the correct letter Step2. open the extracted “.img” file

Step3. Click Write to write the system

http://www.freenove.com/
mailto:support@freenove.com

Install the System 14 www.freenove.com █

█ support@freenove.com

Start Raspberry Pi

After the system is written successfully, take out Micro SD Card and put it into the card slot of RPi. Then

connect RPi to screen through the HDMI, to mouse and keyboard through the USB port, to network cable

through the network card interface and to the power supply. Then your RPi starts initially. Later, you need to

enter the user name and password to login. The default user name: pi; password: raspberry. Enter and login.

After login, you can enter the following interface.

Now, you have successfully installed the RASPBIAN operating system for your RPi.

http://www.freenove.com/
mailto:support@freenove.com

15 Install the System

█ www.freenove.com

support@freenove.com █

Remote desktop & VNC

If you don't have a spare display, mouse and keyboard for your RPi, you can use a remote desktop to share

a display, keyboard, and mouse with your PC. Below is how to use remote desktop to control RPi under the

Windows operating system.

Under windows, Raspberry Pi can be generally accessed remotely through two applications. The first one is

the windows built-in application remote desktop, which corresponds to the Raspberry Pi xrdp service. The

second one is the free application VNC Viewer, which corresponds to the VNC interface of Raspberry Pi. Each

way has its own advantages. You can choose either one or two.

Windows Raspberry Pi

Remote Desktop Connection Xrdp

VNC Viewer VNC

VNC Viewer can not only run under Windows, but also under system MAC, Linux, IOS, Android and so on.

SSH

Under previous Raspbian system, SSH is opened by default. Under the latest version of Raspbian system, it is

closed by default. So you need to open it first.

Method: after the system is written. Create a folder named “ssh” under generated boot disk, then the SSH

connection will be opened.

And then, download the tool software Putty. Its official address: http://www.putty.org/

Or download it here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://www.freenove.com/
mailto:support@freenove.com
http://www.putty.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Install the System 16 www.freenove.com █

█ support@freenove.com

Then use cable to connect your RPi to the routers of your PC LAN, to ensure your PC and your RPi in the same

LAN. Then put the system TF card prepared before into the slot of the RPi and turn on the power supply

waiting for starting RPi. Later, enter control terminal of the router to inquiry IP address named “raspberry pi”.

For example, I have inquired to my RPi IP address, and it is “192.168.1.108". Then open Putty, enter the address,

select SSH, and then click "OPEN", as shown below:

There will appear a security warning at first login. Just click “YES”.

Step1: enter

the IP address

Step2:

Select SSH

Step3:

 Click “OPEN”

http://www.freenove.com/
mailto:support@freenove.com

17 Install the System

█ www.freenove.com

support@freenove.com █

Then there will be a login interface (RPi default user name: pi; the password: raspberry). When you enter the

password, there will be no display on the screen. This is normal. After the correct output, press “Enter” to

confirm.

Then enter the command line of RPi, which means that you have successfully login to RPi command line

mode.

http://www.freenove.com/
mailto:support@freenove.com

Install the System 18 www.freenove.com █

█ support@freenove.com

Remote Desktop Connection & xrdp

If you want to use built-in Remote Desktop Connection under Windows, you need install xrdp service on

Raspberry Pi.

Next, install a xrdp service, an open source remote desktop protocol(rdp) server, for RPi. Type the following

command, then press enter to confirm:

sudo apt-get install xrdp

Later, the installation starts.

Enter "Y", press key “Enter” to confirm.

After the installation is completed, you can use Windows remote desktop applications to login to your RPi.

http://www.freenove.com/
mailto:support@freenove.com

19 Install the System

█ www.freenove.com

support@freenove.com █

Login to Windows remote desktop

Use "WIN+R" or search function, open the remote desktop application "mstsc.exe" under Windows, enter the

IP address of RPi and then click “Connect”.

Later, there will be xrdp login screen. Enter the user name and password of RPi (RPi default user name: pi;

password: raspberry) and click “OK”.

http://www.freenove.com/
mailto:support@freenove.com

Install the System 20 www.freenove.com █

█ support@freenove.com

Later, you can enter the RPi desktop system.

Here, you have successfully used the remote desktop login to RPi.

http://www.freenove.com/
mailto:support@freenove.com

21 Install the System

█ www.freenove.com

support@freenove.com █

VNC Viewer & VNC

Type the following command. And select 5 Interfacing OptionsP3 VNC YesOKFinish. Here Raspberry

Pi may need be restarted, and choose ok. Then open VNC interface.

sudo raspi-config

http://www.freenove.com/
mailto:support@freenove.com

Install the System 22 www.freenove.com █

█ support@freenove.com

Then download and install VNC Viewer by click following link:

https://www.realvnc.com/en/connect/download/viewer/windows/

After installation is completed, open VNC Viewer. And click File  New Connection. Then the interface is

shown below.

Enter ip address of your Raspberry Pi and fill in a Name. And click OK.

Then on the VNC Viewer panel, double-click new connection you just created, and the following dialog box

pops up.

Enter username: pi and Password: raspberry. And click OK.

http://www.freenove.com/
mailto:support@freenove.com
https://www.realvnc.com/en/connect/download/viewer/windows/

23 Install the System

█ www.freenove.com

support@freenove.com █

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer

If you think resolution ratio is not OK, you can set a proper resolution ratio on set interface of Raspberry Pi.

sudo raspi-config

Select 7 Advanced OptionsA5 Resolutionproper resolution ratio(set by yourself)OK. If it needs restart,

just restart.

http://www.freenove.com/
mailto:support@freenove.com

Install the System 24 www.freenove.com █

█ support@freenove.com

In addition, your VNC Viewer window may zoom your Raspberry Pi desktop. You can change it. On your

VNC View control panel, click right key. And select Properties->Options label->Scaling. Then set proper

scaling.

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer and operated proper setting.

Then continue to do some preparation work: install a GPIO library wiringPi for your RPi.

Wi-Fi

Raspberry Pi 3B+/3B integrates a Wi-Fi adaptor. You can use it to connect to your Wi-Fi. Then you can use

the wireless remote desktop to control your RPi. This will be helpful for the following work. Raspberry Pi of

other models can use wireless remote desktop through accessing an external USB wireless card.

http://www.freenove.com/
mailto:support@freenove.com

25 Chapter 0 Preparation

█ www.freenove.com

support@freenove.com █

Chapter 0 Preparation

Why is “Chapter 0”? Because in the program code, all the counts are starting from 0. We choose to follow this

rule (just a joke). In this chapter, we will do some necessary preparation work: start your Pi Raspberry and

install some necessary libraries. If your Raspberry Pi can be started normally and used normally, you can skip

this chapter.

Install WiringPi

WiringPi is a GPIO access library written in C for the BCM2835/BMC2836/ BMC2837 used in the Raspberry Pi.

It’s released under the GNU LGPLv3 license and is usable from C, C++ and many other languages with suitable

wrappers (See below) It’s designed to be familiar to people who have used the Arduino “wiring” system. (for

more details, please refer to http://wiringpi.com/)

WiringPi Installation Steps

New Raspbian system has integrated this library. So it may prompt that you have installed it.

open the terminal:

Terminal Terminal

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/

Chapter 0 Preparation 26 www.freenove.com █

█ support@freenove.com

Follow these steps and commands to complete the installation.

Enter the following command in the terminal to obtain WiringPi using GIT:

sudo apt-get update

sudo apt-get upgrade

git clone git://git.drogon.net/wiringPi

After the cloning operation is completed, go to the wiring folder and update the latest WiringPi.

cd wiringPi

git pull origin

Run the build file to start the installation.

./build

The new build script will compile and install it all for you. It does use the sudo command at one point, so you

may wish to inspect the script before running it.

Run the gpio command to check the installation:

gpio -v

gpio readall

That should give you some confidence that it's working well.

More details refer to here: http://wiringpi.com/download-and-install/

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/download-and-install/

27 Chapter 0 Preparation

█ www.freenove.com

support@freenove.com █

Obtain the Project Code

After the above work is done, you can visit our official website (http://www.freenove.com) or our github

(https://github.com/freenove) to download the latest project code. We provide both C language and Python

language code for each project in order to apply to user skilled in different languages.

Method for obtaining the code:

In the pi directory of the RPi terminal, enter the following command:

cd ~

git clone https://github.com/freenove/Freenove_RFID_Starter_Kit_for_Raspberry_Pi

After the download is completed, a new folder "Freenove_RFID_Starter_Kit_for_Raspberry_Pi" is generated,

which contains all the tutorials and code.

If you think the folder name is too long. You can rename it by following command.

mv Freenove_RFID_Starter_Kit_for_Raspberry_Pi xxx

Among them, "xxx" represents the new folder name. If you rename the folder, you must change every

“Freenove_RFID_Starter_Kit_for_Raspberry_Pi" to new folder name in later commands which contain folder

name.

http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/
https://github.com/freenove

Chapter 0 Preparation 28 www.freenove.com █

█ support@freenove.com

Python2 & Python3

If you only use C/C++, you can skip this section.

Now Python code of our kits can run on Python2 and Python3. Python3 is recommend. If you want to use

python2, please make sure your Python version is above 2.7. Python2 and Python3 is not fully compatible.

However, Python2.6 and Python2.7 are transition versions to python3. So you can also use Python2.6 and 2.7

to execute some Python3 code.

You can type python2 and python3 respectively to check if python has been installed. Pree Ctrl-Z to exit.

Type python, and the terminal shows that it links to python2.

If you want to set Python3 as default Python actuators. please follow the steps below.

1. Enter directory /usr/bin

cd /usr/bin

2. Delete the old python link.

sudo rm python

3. Creat new python links to python3.

sudo ln –s python3 python

4. Execute python to check whether the link succeeds.

python

http://www.freenove.com/
mailto:support@freenove.com

29 Chapter 0 Preparation

█ www.freenove.com

support@freenove.com █

If you want to set python2 as default python actuators, repeat above steps and just change the third command

to the following.

sudo ln –s python2 python

We will execute a same python file Hello.py with Python2 and Python3.

First, use Python2 to execute the code.

1. Use cd command to enter 00.0.0_Hello directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/00.0.0_Hello

2. Use python2 command to execute python code Hello.py.

python2 Hello.py

Use Python3 to execute the code under same directory.

3. Use python3 command to execute python code Hello.py.

python3 Hello.py

As you can see, we get same results.

Because the code for our kit supports Python2 and Python3. We just say python later, not specific Python2 or

Python3. You can shoose python version according to your situation.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 0 Preparation 30 www.freenove.com █

█ support@freenove.com

Code Editor

vi, nano, Geany

Here we will introduce three kinds of code editor: vi, nano and Geany. Among them, nano and vi are used to

edit files directly in the terminal, and Geany is an independent editing software. We will use the three editors

to open an example code "Hello.c" respectively. First we will show how use vi and nano editor:

First, use cd command to enter the sample code folder.

cd ~

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/00.0.0_Hello

Use the vi editor to open the file "Hello.c", then press ": q" and “Enter” to exit.

vi Hello.c

As is shown below:

Use the nano editor to open the file "Hello.c", then press " Ctrl+X " to exit.

nano Hello.c

http://www.freenove.com/
mailto:support@freenove.com

31 Chapter 0 Preparation

█ www.freenove.com

support@freenove.com █

As is shown below：

Use the following command to compile the code to generate the executable file “Hello”.

gcc Hello.c –o Hello

Use the following command to run the executable file “Hello”.

sudo ./Hello

After the execution, "Hello, World!" is printed out in terminal.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 0 Preparation 32 www.freenove.com █

█ support@freenove.com

Next, learn to use the Geany editor. Use the following command to open the Geany in the sample file

"Hello.c" file directory path.

geany Hello.c

Or find and open Geany directly in the desktop main menu, and then click File->Open to open the "Hello.c",

Or drag "Hello.c" to Geany directly.

http://www.freenove.com/
mailto:support@freenove.com

33 Chapter 0 Preparation

█ www.freenove.com

support@freenove.com █

Generates an executable file by clicking menu bar Build->Build, then execute the generated file by clicking

menu bar Build->Execute.

After the execution, there will be a terminal printing out the characters “Hello, World!”, as shown below:

http://www.freenove.com/
mailto:support@freenove.com

Chapter 0 Preparation 34 www.freenove.com █

█ support@freenove.com

You can click Build->Set Build Commands to set compiler commands. In later projects, we will use various

compiler command options. If you choose to use Geany, you will need change the compiler command here.

As is shown below:

Summary

Here we have introduced three code editors. There also many other good code editors, and you can choose

any one you like. In later projects, about the entry path and the compiler execute commands, we will

operate the contents in the terminal as examples. We won’t emphasize the code editing process, but will

explain the contents of the code in details.

http://www.freenove.com/
mailto:support@freenove.com

35 Chapter 0 Preparation

█ www.freenove.com

support@freenove.com █

GPIO

GPIO: General purpose input/output. We will introduce the specific future of the pins on the Raspberry Pi and

what you can do with them. You can use them for all sorts of purposes. Most of them can be used as either

inputs or outputs, depending on your program.

When programming the GPIO pins there are 3 different ways to refer to them: GPIO numbering, physical

numbering, WiringPi GPIO Numbering.

BCM GPIO Numbering

Raspberry Pi CPU use BCM2835/BCM2836/BCM2837of Broadcom. GPIO pin number is set by chip

manufacturer. These are the GPIO pins as that computer recognizes. The numbers don't make any sense to

humans. They jump all over the place, so there is no easy way to remember them. You will need a printed

reference or a reference board that fits over the pins.

Each pin is defined as below:

For more details about pin definition of GPIO, please refer to http://pinout.xyz/

http://www.freenove.com/
mailto:support@freenove.com
http://pinout.xyz/

Chapter 0 Preparation 36 www.freenove.com █

█ support@freenove.com

PHYSICAL Numbering

Another way to refer to the pins is by simply counting across and down from pin 1 at the top left (nearest to

the SD card). This is 'physical numbering', as shown below:

http://www.freenove.com/
mailto:support@freenove.com

37 Chapter 0 Preparation

█ www.freenove.com

support@freenove.com █

WiringPi GPIO Numbering

Different from the previous mentioned two kinds of GPIO serial numbers, RPi GPIO serial number of the

WiringPi was renumbered. Here we have three kinds of GPIO number mode: based on the number of BCM

chip, based on the physical sequence number and based on wiringPi. The correspondence between these

three GPIO numbers is shown below:

(For more details, please refer to https://projects.drogon.net/raspberry-pi/wiringpi/pins/)

http://www.freenove.com/
mailto:support@freenove.com
https://projects.drogon.net/raspberry-pi/wiringpi/pins/

Chapter 0 Preparation 38 www.freenove.com █

█ support@freenove.com

You can also use the following command to view their correspondence.

gpio readall

For more details about wiringPi, please refer to http://wiringpi.com/ .

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/

39 Chapter 0 Preparation

█ www.freenove.com

support@freenove.com █

GPIO Extension Board

When we use RPi to do the project, we had better use GPIO, which is more convenient to extend all IO ports

of RPi to the bread board directly. The GPIO sequence on Extension Board is identical to the GPIO sequence

of RPi. Since the GPIO of different versions of RPi is different, the corresponding extensions board are also

different. For example, a GPIO extensions board with 40 pins is connected to RPi as follows:

Practicality picture of connection:

http://www.freenove.com/
mailto:support@freenove.com

Chapter 0 Preparation 40 www.freenove.com █

█ support@freenove.com

GPIO Extension Board and its schematic are shown below:

GPIO Extension Board

Definition of pins

Breadboard Power Module

Breadboard Power Module is an independent board, which can provide independent 5V or 3.3V power for

bread board when used to build the circuit, and it can avoid excessive load power damaging RPi power. The

schematic diagram of the Breadboard Power Module is shown below:

Power Jack

Power Switch

Output voltage selection

Output port for power

Output voltage selection

Output port for power

USB Output Port

Power Light

http://www.freenove.com/
mailto:support@freenove.com

41 Chapter 0 Preparation

█ www.freenove.com

support@freenove.com █

The connection between Breadboard Power Module and Breadboard is shown below:

Next

Here, all preliminary preparations have been completed. Next, we will combine the RPi and electronic

components to do a series of projects from easy to difficult and focus on explaining the relevant knowledge

of electronic circuit.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 1 LED 42 www.freenove.com █

█ support@freenove.com

Chapter 1 LED

This chapter is the starting point of the journey to explore RPi electronic projects. Let’s start with simple “Blink”.

Project 1.1 Blink

In this project, let’s try to use RPi to control LED blinking.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

http://www.freenove.com/
mailto:support@freenove.com

43 Chapter 1 LED

█ www.freenove.com

support@freenove.com █

LED x1

Resistor 220Ω x1

Jumper

In the components list, 3B GPIO, Extension Shield Raspberry and Breadboard are necessary for each project.

They will be listed only in text form later.

Component knowledge

LED

LED is a kind of diode. LED will shine only if the long pin of LED is connected to the positive electrode and the

short pin is connected to negative electrode.

This is also the features of the common diode. Diode works only if the voltage of its positive electrode is

higher than its negative electrode.

The LED can not be directly connected to power supply, which can damage component. A resistor with certain

resistance must be connected in series in the circuit of LED.

Resistor

The unit of resistance(R) is ohm(Ω). 1mΩ=1000kΩ, 1kΩ=1000Ω.

Resistor is an electrical component that limits or regulates the flow of current in an electronic circuit.

The left is the appearance of resistor, and the right is the symbol of resistor represented in circuit.

Color rings attached to the resistor is used to indicate its resistance. For more details of resistor color code,

please refer to the appendix of this tutorial.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 1 LED 44 www.freenove.com █

█ support@freenove.com

With the same voltage there will be less current with more resistance. And the links among current, voltage

and resistance can be expressed by the formula below: I=U/R.

In the following diagram, the current through R1 is: I=U/R=5V/10kΩ=0.0005A=0.5mA.

Do not connect the two poles of power supply with low resistance, which will make the current too high to

damage electronic components.

http://www.freenove.com/
mailto:support@freenove.com

45 Chapter 1 LED

█ www.freenove.com

support@freenove.com █

Circuit

Disconnect RPi from GPIO Extension Shield first. Then build the circuit according to the circuit diagram and

the hardware connection diagram. After the circuit is built and confirmed, connect RPi to GPIO Extension

Shield. In addition, short circuit (especially 5V and GND, 3.3V and GND) should be avoid, because short circuit

may cause abnormal circuit work, or even damage to RPi.

Schematic diagram

Hardware connection

Because Numbering of GPIO Extension Shield is the same as RPi GPIO, later Hardware connection diagram

will only show the part of breadboard and GPIO Extension Shield.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 1 LED 46 www.freenove.com █

█ support@freenove.com

Code

According to the circuit, when the GPIO17 of RPi output high level, LED is turned on. Conversely, when the

GPIO17 RPi output low level, LED is turned off. Therefore, we can let GPIO17 output high and low level in

cycle to make LED blink. We will use both C code and Python code to achieve the target.

C Code 1.1.1 Blink

First, observe the project result, and then analyze the code.

1. Use cd command to enter 01.1.1_Blink directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/01.1.1_Blink

2. Use the following command to compile the code “Blink.c” and generate executable file “Blink”.

gcc Blink.c –o Blink -lwiringPi

3. Then run the generated file “blink”.

sudo ./Blink

Now, LED start blink. You can press “Ctrl+C” to end the program.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#include <wiringPi.h>

#include <stdio.h>

#define ledPin 0

int main(void)

{

 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 //when initialize wiring successfully, print message to screen

 printf("wiringPi initialize successfully, GPIO %d(wiringPi pin)\n",ledPin);

 pinMode(ledPin, OUTPUT);

 while(1){

 digitalWrite(ledPin, HIGH); //led on

 printf("led on...\n");

 delay(1000);

 digitalWrite(ledPin, LOW); //led off

 printf("...led off\n");

 delay(1000);

 }

 return 0;

}

http://www.freenove.com/
mailto:support@freenove.com

47 Chapter 1 LED

█ www.freenove.com

support@freenove.com █

GPIO connected to ledPin in the circuit is GPIO17. And GPIO17 is defined as 0 in the wiringPi numbering. So

ledPin should be defined as 0 pin. You can refer to the corresponding table in Chapter 0.

 #define ledPin 0

In the main function main(), initialize wiringPi first, and then print out the initial results. Once the initialization

fails, exit the program.

 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 //when initialize wiring successfully, print message to screen

 printf("wiringPi initialize successfully, GPIO %d(wiringPi pin)\n",ledPin);

After the wiringPi is initialized successfully, set the ledPin to output mode. And then enter the while cycle,

which is an endless loop. That is, the program will always be executed in this cycle, unless it is ended outside.

In this cycle, use digitalWrite (ledPin, HIGH) to make ledPin output high level, then LED is turned on. After a

period of time delay, use digitalWrite(ledPin, LOW) to make ledPin output low level, then LED is turned off,

which is followed by a delay. Repeat the cycle, then LED will start blinking.

 pinMode(ledPin, OUTPUT);

 while(1){

 digitalWrite(ledPin, HIGH); //led is turned on

 printf("led on...\n");

 delay(1000);

 digitalWrite(ledPin, LOW); //led is turned off

 printf("...led off\n");

 delay(1000);

 }

Among them, the configuration function for GPIO is shown below as:

void pinMode(int pin, int mode);

This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or GPIO_CLOCK. Note that only

wiringPi pin 1 (BCM_GPIO 18) supports PWM output and only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK

output modes.

This function has no effect when in Sys mode. If you need to change the pin mode, then you can do it with

the gpio program in a script before you start your program

void digitalWrite (int pin, int value);

Writes the value HIGH or LOW (1 or 0) to the given pin which must have been previously set as an output.

For more related functions, please refer to http://wiringpi.com/reference/

Python Code 1.1.1 Blink

Net, we will use Python language to make LED blink.

First, observe the project result, and then analyze the code.

1. Use cd command to enter 01.1.1_Blink directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/01.1.1_Blink

2. Use python command to execute python code blink.py.

python Blink.py

Now, LED start blinking.

The following is the program code:

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/reference/

Chapter 1 LED 48 www.freenove.com █

█ support@freenove.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

import RPi.GPIO as GPIO

import time

ledPin = 11 # RPI Board pin11

def setup():

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(ledPin, GPIO.OUT) # Set ledPin's mode is output

 GPIO.output(ledPin, GPIO.LOW) # Set ledPin low to off led

 print ('using pin%d'%ledPin)

def loop():

 while True:

 GPIO.output(ledPin, GPIO.HIGH) # led on

 print ('...led on')

 time.sleep(1)

 GPIO.output(ledPin, GPIO.LOW) # led off

 print ('led off...')

 time.sleep(1)

def destroy():

 GPIO.output(ledPin, GPIO.LOW) # led off

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

In subfunction setup(), GPIO.setmode (GPIO.BOARD) is used to set the serial number for GPIO based on

physical location of the pin. GPIO17 use pin 11 of the board, so define ledPin as 11 and set ledPin to output

mode (output low level).

 ledPin = 11 # RPi Board pin11

def setup():

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(ledPin, GPIO.OUT) # Set ledPin to output mode

 GPIO.output(ledPin, GPIO.LOW) # Set ledPin to low level to turn off led

 print ('using pin%d'%ledPin)

In loop(), there is a while cycle, which is an endless loop. That is, the program will always be executed in this

http://www.freenove.com/
mailto:support@freenove.com

49 Chapter 1 LED

█ www.freenove.com

support@freenove.com █

cycle, unless it is ended outside. In this cycle, set ledPin output high level, then LED is turned on. After a period

of time delay, set ledPin output low level, then LED is turned off, which is followed by a delay. Repeat the cycle,

then LED will start blinking.

 def loop():

 while True:

 GPIO.output(ledPin, GPIO.HIGH) # led on

 print ('...led on')

 time.sleep(1)

 GPIO.output(ledPin, GPIO.LOW) # led off

 print ('led off...')

 time.sleep(1)

Finally, when the program is terminated, subfunction will be executed, the LED will be turned off and then the

IO port will be released. If close the program terminal directly, the program will be terminated too, but destroy

() function will not be executed. So, GPIO resources won’t be released, in the warning message may appear

next time you use GPIO. So, it is not a good habit to close the program terminal directly.

 def destroy():

 GPIO.output(ledPin, GPIO.LOW) # led is turned off

 GPIO.cleanup() # Release resource

About RPi.GPIO：

RPi.GPIO

This is a Python module to control the GPIO on a Raspberry Pi. It includes basic output function and input

function of GPIO, and function used to generate PWM.

GPIO.setmode(mode)

Set the mode for pin serial number of GPIO.

mode=GPIO.BOARD, which represents the GPIO pin serial number is based on physical location of RPi.

mode=GPIO.BCM, which represents the pin serial number is based on CPU of BCM chip.

GPIO.setup(pin,mode)

Set pin to input mode or output mode. “pin” for the GPIO pin, “mode” for INPUT or OUTPUT.

GPIO.output(pin,mode)

Set pin to output mode. “pin” for the GPIO pin, “mode” for HIGH (high level) or LOW (low level).

For more functions related to RPi.GPIO, please refer to:

https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

http://www.freenove.com/
mailto:support@freenove.com
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

Chapter 2 Button & LED 50 www.freenove.com █

█ support@freenove.com

Chapter 2 Button & LED

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL.

In last section, the LED module is the output part and RPI is the control part. In practical applications, we not

only just let the LED lights flash, but make the device sense the surrounding environment, receive instructions

and then make the appropriate action such as lights the LED, make a buzzer beep and so on.

Next, we will build a simple control system to control LED through a button.

Project 2.1 Button & LED

In the project, we will control the LED state through a button. When the button is pressed, LED will be turn

on, and when it is released, LED will be turn off.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

LED x1

Resistor 220Ω

x1

Resistor 10kΩ

x2

Push

button x1

Jumper

Component knowledge

Push button

Push button has 4 pins. Two pins on the left is connected, and the right is similar as the left, which is shown

Input:

buttons, switches,

sensors and etc.

Control:

RPI, Arduino,

MCU and etc.

Output:

LED, buzzer,

motor and etc.

http://www.freenove.com/
mailto:support@freenove.com

51 Chapter 2 Button & LED

█ www.freenove.com

support@freenove.com █

in the below:

When the push button is pressed, the circuit is turned on.

Circuit

Schematic diagram

Hardware connection

Code

This project is designed for learning how to use button to control LED. We first need to read the state of

http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED 52 www.freenove.com █

█ support@freenove.com

button, and then determine whether turn on LED according to the state of the button.

C Code 2.1.1 ButtonLED

First, observe the project result, then analyze the code.

1. Use cd command to enter 02.1.1_ButtonLED directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/02.1.1_ButtonLED

2. Use the following command to compile the code “ButtonLED.c” and generate executable file “ButtonLED”

gcc ButtonLED.c –o ButtonLED -lwiringPi

3. Then run the generated file “ButtonLED”.

sudo ./ButtonLED

Later, the terminal window continues to print out the characters “led off…”. Press the button, then LED is

turned on and then terminal window prints out the "led on…". Release the button, then LED is turned off and

then terminal window prints out the "led off…". You can press "Ctrl+C" to terminate the program.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

#include <wiringPi.h>

#include <stdio.h>

#define ledPin 0 //define the ledPin

#define buttonPin 1 //define the buttonPin

int main(void)

{

 if(wiringPiSetup() == -1){ //when initialization for wiring fails, print message to

screen

 printf("setup wiringPi failed !");

 return 1;

 }

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin, INPUT);

 pullUpDnControl(buttonPin, PUD_UP); //pull up to high level

 while(1){

 if(digitalRead(buttonPin) == LOW){ //button has pressed down

 digitalWrite(ledPin, HIGH); //led on

 printf("led on...\n");

 }

 else { //button has released

 digitalWrite(ledPin, LOW); //led off

 printf("...led off\n");

 }

 }

 return 0;

}

http://www.freenove.com/
mailto:support@freenove.com

53 Chapter 2 Button & LED

█ www.freenove.com

support@freenove.com █

In the circuit connection, LED and Button are connected with GPIO17 and GPIO18 respectively, which

correspond to 0 and 1 respectively in wiringPI. So define ledPin and buttonPin as 0 and 1 respectively.

 #define ledPin 0 //define the ledPin

#define buttonPin 1 //define the buttonPin

In the while cycle of main function, use digitalRead(buttonPin) to determine the state of Button. When the

button is pressed, the function returns low level, the result of “if” is true, and then turn on LED. Or, turn off

LED.

 if(digitalRead(buttonPin) == LOW){ //button has pressed down

 digitalWrite(ledPin, HIGH); //led on

 printf("led on...\n");

 }

 else { //button has released

 digitalWrite(ledPin, LOW); //led off

 printf("...led off\n");

 }

About digitalRead():

int digitalRead (int pin);

This function returns the value read at the given pin. It will be “HIGH” or “LOW”(1 or 0) depending on the

logic level at the pin.

The code of Python language is shown below.

Python Code 2.1.1 ButtonLED

First, observe the project result, then analyze the code.

1. Use cd command to enter 01.1.1_btnLED directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/02.1.1_ButtonLED

2. Use Python command to execute btnLED.py.

python ButtonLED.py

Later, the terminal window continue to print out the characters “led off…”, press the button, then LED is turned

on and then terminal window print out the "led on…". Release the button, then LED is turned off and then

terminal window print out the "led off…". You can press "Ctrl+C" to terminate the program.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

import RPi.GPIO as GPIO

ledPin = 11 # define the ledPin

buttonPin = 12 # define the buttonPin

def setup():

 print ('Program is starting...')

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(ledPin, GPIO.OUT) # Set ledPin's mode is output

 GPIO.setup(buttonPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set buttonPin's mode is

input, and pull up to high level(3.3V)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED 54 www.freenove.com █

█ support@freenove.com

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

def loop():

 while True:

 if GPIO.input(buttonPin)==GPIO.LOW:

 GPIO.output(ledPin,GPIO.HIGH)

 print ('led on ...')

 else :

 GPIO.output(ledPin,GPIO.LOW)

 print ('led off ...')

def destroy():

 GPIO.output(ledPin, GPIO.LOW) # led off

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

In subfunction setup (), GPIO.setmode (GPIO.BOARD) is used to set the serial number of the GPIO, which is

based on physical location of the pin. So, GPIO17 and GPIO18 correspond to pin11 and pin12 respectively in

the circuit. Then set ledPin to output mode, buttonPin to input mode with a pull resistor.

 ledPin = 11 # define the ledPin

buttonPin = 12 # define the buttonPin

def setup():

 print ('Program is starting...')

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(ledPin, GPIO.OUT) # Set ledPin's mode is output

 GPIO.setup(buttonPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set buttonPin's mode is

input, and pull up to high level(3.3V)

In the loop function while dead circulation, continue to judge whether the key is pressed. When the button is

pressed, the GPIO.input(buttonPin) will return low level, then the result of “if” is true, ledPin outputs high level,

LED is turned on. Or, LED will be turned off.

 def loop():

 while True:

 if GPIO.input(buttonPin)==GPIO.LOW:

 GPIO.output(ledPin,GPIO.HIGH)

 print ('led on ...')

 else :

 GPIO.output(ledPin,GPIO.LOW)

 print ('led off ...')

http://www.freenove.com/
mailto:support@freenove.com

55 Chapter 2 Button & LED

█ www.freenove.com

support@freenove.com █

Execute the function destroy (), close the program and release the resource.

About function GPIO.input ():

GPIO.input()

This function returns the value read at the given pin. It will be “HIGH” or “LOW”(1 or 0) depending on the

logic level at the pin.

Project 2.2 MINI table lamp

We will also use a button, LED and UNO to make a MINI table lamp. But the function is different: Press the

button, the LED will be turned on, and press the button again, the LED goes out.

First, let us learn some knowledge about the button.

Debounce for Push Button

When a Push Button is pressed, it will not change from one state to another state immediately. Due to

mechanical vibration, there will be a continuous buffeting before it becomes another state. And the releasing-

situation is similar with that process.

Therefore, if we directly detect the state of Push Button, there may be multiple pressing and releasing action

in one pressing process. The buffeting will mislead the high-speed operation of the microcontroller to cause

a lot of false judgments. So we need to eliminate the impact of buffeting. Our solution is: to judge the state

of the button several times. Only when the button state is stable after a period of time, can it indicate that the

button is pressed down.

This project needs the same components and circuits with the last section.

Ideal state

Virtual state

press stable release stable

http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED 56 www.freenove.com █

█ support@freenove.com

Code

In the project, we still detect the state of Button to control LED. Here we need to define a variable to save the

state of LED. And when the button is pressed once, the state of LED will be changed once. This has achieved

the function of the table lamp.

C Code 2.2.1 Tablelamp

First observe the project result, and then analyze the code.

1. Use cd command to enter 02.2.1_Tablelamp directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/02.1.1_Tablelamp

2. Use following command to compile “Tablelamp.c” and generate executable file “Tablelamp”.

gcc Tablelamp.c –o Tablelamp-lwiringPi

3. Tablelamp. Then run the generated file “Tablelamp”.

sudo ./Tablelamp

When the program is executed, press the Button once, then LED is turned on. Press the Button another time,

then LED is turned off.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#include <wiringPi.h>

#include <stdio.h>

#define ledPin 0 //define the ledPin

#define buttonPin 1 //define the buttonPin

int ledState=LOW; //store the State of led

int buttonState=HIGH; //store the State of button

int lastbuttonState=HIGH;//store the lastState of button

long lastChangeTime; //store the change time of button state

long captureTime=50; //set the button state stable time

int reading;

int main(void)

{

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 printf("Program is starting...\n");

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin, INPUT);

 pullUpDnControl(buttonPin, PUD_UP); //pull up to high level

 while(1){

 reading = digitalRead(buttonPin); //read the current state of button

 if(reading != lastbuttonState){ //if the button state has changed ,record the

time point

 lastChangeTime = millis();

 }

http://www.freenove.com/
mailto:support@freenove.com

57 Chapter 2 Button & LED

█ www.freenove.com

support@freenove.com █

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

 //if changing-state of the button last beyond the time we set, we considered that

 //the current button state is an effective change rather than a buffeting

 if(millis() - lastChangeTime > captureTime){

 //if button state is changed ,update the data.

 if(reading != buttonState){

 buttonState = reading;

 //if the state is low ,the action is pressing

 if(buttonState == LOW){

 printf("Button is pressed!\n");

 ledState = !ledState;

 if(ledState){

 printf("turn on LED ...\n");

 }

 else {

 printf("turn off LED ...\n");

 }

 }

 //if the state is high ,the action is releasing

 else {

 printf("Button is released!\n");

 }

 }

 }

 digitalWrite(ledPin,ledState);

 lastbuttonState = reading;

 }

 return 0;

}

This code focuses on eliminating the buffeting of button. We define several variables to save the state of LED

and button. Then read the button state in while () constantly, and determine whether the state has changed.

If it is, record this time point.

 reading = digitalRead(buttonPin); //read the current state of button

 if(reading != lastbuttonState){

lastChangeTime = millis();

 }

millis()

Returns the number of milliseconds since the Arduino board began running the current program.

Then according to just recorded time point, judge the duration of the button state change. If the duration

exceeds captureTime (buffeting time) we set, it indicates that the state of the button has changed. During that

time, the while () is still detecting the state of the button, so if there is a change, the time point of change will

be updated. Then duration will be judged again until the duration of there is a stable state exceeds the time

we set.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED 58 www.freenove.com █

█ support@freenove.com

 if(millis() - lastChangeTime > captureTime){

 //if button state is changed ,update the data.

 if(reading != buttonState){

 buttonState = reading;

Finally, judge the state of Button. And if it is low level, the changing state indicates that the button is pressed,

if the state is high level, then the button is released. Here, we change the status of the LED variable, and then

update the state of LED.

 if(buttonState == LOW){

 printf("Button is pressed!\n");

 ledState = !ledState;

 if(ledState){

 printf("turn on LED ...\n");

 }

 else {

 printf("turn off LED ...\n");

 }

 }

 //if the state is high ,the action is releasing

 else {

 printf("Button is released!\n");

 }

Python Code 2.2.1 Tablelamp

First observe the project result, and then analyze the code.

1. Use cd command to enter 02.2.1_Tablelamp directory of Python code

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/02.2.1_Tablelamp

2. Use python command to execute python code “Tablelamp.py”.

python Tablelamp.py

When the program is executed, press the Button once, then LED is turned on. Press the Button another time,

then LED is turned off.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

import RPi.GPIO as GPIO

ledPin = 11 # define the ledPin

buttonPin = 12 # define the buttonPin

ledState = False

def setup():

 print ('Program is starting...')

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(ledPin, GPIO.OUT) # Set ledPin's mode is output

 GPIO.setup(buttonPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set buttonPin's mode is

input, and pull up to high

def buttonEvent(channel):#When the button is pressed, this function will be executed

http://www.freenove.com/
mailto:support@freenove.com

59 Chapter 2 Button & LED

█ www.freenove.com

support@freenove.com █

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

 global ledState

 print ('buttonEvent GPIO%d' %channel)

 ledState = not ledState

 if ledState :

 print ('Turn on LED ... ')

 else :

 print ('Turn off LED ... ')

 GPIO.output(ledPin,ledState)

def loop():

 #Button detect

 GPIO.add_event_detect(buttonPin,GPIO.FALLING,callback = buttonEvent,bouncetime=300)

 while True:

 pass

def destroy():

 GPIO.output(ledPin, GPIO.LOW) # led off

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

RPi.GPIO provides us with a simple and effective function to eliminate the jitter, that is

GPIO.add_event_detect(). It uses callback function. Once it detect that the buttonPin has a specified action

FALLING, execute the specified function buttonEvent(). In the function buttonEvent, each time the ledState is

reversed, the state of the LED will be updated.

 def buttonEvent(channel):

 global ledState

 print 'buttonEvent GPIO%d'%channel

 ledState = not ledState

 if ledState :

 print ('Turn on LED ... ')

 else :

 print ('Turn off LED ... ')

 GPIO.output(ledPin,ledState)

def loop():

 #Button detect

http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED 60 www.freenove.com █

█ support@freenove.com

 GPIO.add_event_detect(buttonPin,GPIO.FALLING,callback = buttonEvent,bouncetime=300)

 while True:

 pass

Of course, you can also use the same programming idea of C code above to achieve this target.

GPIO.add_event_detect(channel, GPIO.RISING, callback=my_callback, bouncetime=200)

This is an event detection function. The first parameter specifies the IO port to be detected. The second

parameter specifies the action to be detected. The third parameter specified a function name, the function

will be executed when the specified action is detected. And the fourth parameter is used to set the jitter

time.

http://www.freenove.com/
mailto:support@freenove.com

61 Chapter 3 LEDBar Graph

█ www.freenove.com

support@freenove.com █

Chapter 3 LEDBar Graph

We have learned how to control a LED blinking, and next we will learn how to control a number of LED.

Project 3.1 Flowing Water Light

In this project, we use a number of LED to make a flowing water light.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

LED bar graph x1

Resistor 220Ω x10

Jumper

Component knowledge

Let us learn about the basic features of components to use them better.

LED bar graph

LED bar graph is a component Integration consist of 10 LEDs. There are two rows of pins at its bottom.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 3 LEDBar Graph 62 www.freenove.com █

█ support@freenove.com

Circuit

The network label is used in the circuit diagram below, and the pins with the same network label are connected

together.

Schematic diagram

Hardware connection

In this circuit, the cathode of LED is connected to GPIO, which is the different from the front circuit. So, LED

will be turned on when GPIO output low level in the program.

http://www.freenove.com/
mailto:support@freenove.com

63 Chapter 3 LEDBar Graph

█ www.freenove.com

support@freenove.com █

Code

This project is designed to make a water lamp. First turn on the first LED, then turn off it. Then turn on the

second LED, and then turn off it....... Until the last LED is turned on, then is turned off. And repeats the process

to achieve the effect of flowing water light.

C Code 3.1.1 LightWater

First observe the project result, and then analyze the code.

1. Use cd command to enter 03.1.1_LightWater directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/03.1.1_LightWater

2. Use following command to compile “LightWater.c” and generate executable file “LightWater”.

gcc LightWater.c –o LightWater-lwiringPi

3. Then run the generated file “LightWater”.

sudo ./LightWater

After the program is executed, you will see that LEDBar Graph starts with the flowing water way to be turned

on from left to right, and then from right to left.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#include <wiringPi.h>

#include <stdio.h>

#define leds 10

int pins[leds] = {0,1,2,3,4,5,6,8,9,10};

void led_on(int n)//make led_n on

{

 digitalWrite(n, LOW);

}

void led_off(int n)//make led_n off

{

 digitalWrite(n, HIGH);

}

int main(void)

{

 int i;

 printf("Program is starting ... \n");

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 for(i=0;i<leds;i++){ //make leds pins' mode is output

 pinMode(pins[i], OUTPUT);

 }

 while(1){

 for(i=0;i<leds;i++){ //make led on from left to right

http://www.freenove.com/
mailto:support@freenove.com

Chapter 3 LEDBar Graph 64 www.freenove.com █

█ support@freenove.com

28

29

30

31

32

33

34

35

36

37

38

39

 led_on(pins[i]);

 delay(100);

 led_off(pins[i]);

 }

 for(i=leds-1;i>-1;i--){ //make led on from right to left

 led_on(pins[i]);

 delay(100);

 led_off(pins[i]);

 }

 }

 return 0;

}

In the program, configure the GPIO0-GPIO9 to output mode. Then, in the endless “while” cycle of main

function, use two “for” cycle to realize flowing water light from left to right and from right to left.

 while(1){

 for(i=0;i<leds;i++){ //make led on from left to right

 led_on(pins[i]);

 delay(100);

 led_off(pins[i]);

 }

 for(i=leds-1;i>-1;i--){ //make led on from right to left

 led_on(pins[i]);

 delay(100);

 led_off(pins[i]);

 }

 }

Python Code 3.1.1 LightWater

First observe the project result, and then analyze the code.

1. Use cd command to enter 03.1.1_LightWater directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/03.1.1_LightWater

2. Use Python command to execute Python code “LightWater.py”.

python LightWater.py

After the program is executed, you will see that LEDBar Graph starts with the flowing water way to be turned

on from left to right, and then from right to left.

The following is the program code:

1

2

3

4

5

6

7

8

import RPi.GPIO as GPIO

import time

ledPins = [11, 12, 13, 15, 16, 18, 22, 3, 5, 24]

def setup():

 print ('Program is starting...')

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

http://www.freenove.com/
mailto:support@freenove.com

65 Chapter 3 LEDBar Graph

█ www.freenove.com

support@freenove.com █

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 for pin in ledPins:

 GPIO.setup(pin, GPIO.OUT) # Set all ledPins' mode is output

 GPIO.output(pin, GPIO.HIGH) # Set all ledPins to high(+3.3V) to off led

def loop():

 while True:

 for pin in ledPins: #make led on from left to right

 GPIO.output(pin, GPIO.LOW)

 time.sleep(0.1)

 GPIO.output(pin, GPIO.HIGH)

 for pin in ledPins[10:0:-1]: #make led on from right to left

 GPIO.output(pin, GPIO.LOW)

 time.sleep(0.1)

 GPIO.output(pin, GPIO.HIGH)

def destroy():

 for pin in ledPins:

 GPIO.output(pin, GPIO.HIGH) # turn off all leds

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

In the program, first define 10 pins connected to LED, and set them to output mode in subfunction setup().

Then in the loop() function, use two “for” cycles to realize flowing water light from right to left and from left

to right. Among them, ledPins[10:0:-1] is used to traverse elements of ledPins in reverse order.

 def loop():

 while True:

 for pin in ledPins: #make led on from left to right

 GPIO.output(pin, GPIO.LOW)

 time.sleep(0.1)

 GPIO.output(pin, GPIO.HIGH)

 for pin in ledPins[10:0:-1]: #make led on from right to left

 GPIO.output(pin, GPIO.LOW)

 time.sleep(0.1)

 GPIO.output(pin, GPIO.HIGH)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 4 Analog & PWM 66 www.freenove.com █

█ support@freenove.com

Chapter 4 Analog & PWM

In previous study, we have known that one button has two states: pressed and released, and LED has light-

on/off state, then how to enter a middle state? How to output an intermediate state to let LED "semi bright"?

That's what we're going to learn.

First, let’s learn how to control the brightness of a LED.

Project 4.1 Breathing LED

Breathing light, that is, LED is turned from off to on gradually, gradually from on to off, just like "breathing".

So, how to control the brightness of a LED? We will use PWM to achieve this target.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

LED x1

Resistor 220Ω x1

Jumper

Circuit knowledge

Analog & Digital

The analog signal is a continuous signal in time and value. On the contrary, digital signal is a discrete signal

in time and value. Most signals in life are analog signals, for example, the temperature in one day is

continuously changing, and will not appear a sudden change directly from 0℃ to 10℃, while the digital signal

is a jump change, which can be directly from 1 to 0.

Their difference can be illustrated by the following figure.

In practical application, we often use binary signal as digital signal, that is 0 and 1. The binary signal only has

http://www.freenove.com/
mailto:support@freenove.com

67 Chapter 4 Analog & PWM

█ www.freenove.com

support@freenove.com █

two forms (0 or 1), so it has strong stability. And digital signal and analog signal can be converted to each

other.

PWM

PWM, namely Width Modulation Pulse, is a very effective technique for using digital signals to control analog

circuits. The common processors can not directly output analog signals. PWM technology make it very

convenient to achieve this purpose.

PWM technology uses digital pins to send certain frequency of square waves, that is, the output of high level

and low level that last for a while alternately. The total time for each set of high level and low level is generally

fixed, which is called period (the reciprocal of the period is frequency). The time of high level outputting is

generally called pulse width, and the percentage of pulse width is called duty cycle.

The longer the output of high level last, the larger the duty cycle and the larger the corresponding voltage in

analog signal will be. The following figures show how the analog signals voltage vary between 0V-5V (high

level is 5V) corresponding to the pulse width 0%-100%:

The larger PWM duty cycle is, the lager the output power will be. So we can use PWM to control the brightness

of LED, the speed of DC motor and so on.

It is evident from the above that PWM is not real analog, and the effective value of the voltage is equivalent

to the corresponding analog. so, we can control the output power of the LED and other output modules to

achieve different effects.

In RPi, only GPIO18 has the ability to output PWM with a 10-bit accuracy, that is, 100% of the pulse width can

be divided into 2
10
=1024 equal parts.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 4 Analog & PWM 68 www.freenove.com █

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

Code

This project is designed to make PWM output GPIO18 with pulse width increasing from 0% to 100%, and then

reducing from 100% to 0% gradually.

C Code 4.1.1 BreathingLED

First observe the project result, and then analyze the code.

1. Use cd command to enter 04.1.1_BreathingLED directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/04.1.1_BreathingLED

2. Use following command to compile “BreathingLED.c” and generate executable file “BreathingLED”.

gcc BreathingLED.c –o BreathingLED -lwiringPi

3. Then run the generated file “BreathingLED”

sudo ./ BreathingLED

After the program is executed, you'll see that LED is turned from on to off and then from off to on gradually

like breathing.

The following is the program code:

1

2

3

4

5

6

7

8

#include <wiringPi.h>

#include <stdio.h>

#define ledPin 1 //Only GPIO18 can output PWM

int main(void)

{

 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

 printf("setup wiringPi failed !");

http://www.freenove.com/
mailto:support@freenove.com

69 Chapter 4 Analog & PWM

█ www.freenove.com

support@freenove.com █

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

 return 1;

 }

 pinMode(ledPin, PWM_OUTPUT);//pwm output mode

 while(1){

 for(i=0;i<1024;i++){

 pwmWrite(ledPin, i);

 delay(2);

 }

 delay(300);

 for(i=1023;i>=0;i--){

 pwmWrite(ledPin, i);

 delay(2);

 }

 delay(300);

 }

 return 0;

}

Since only GPIO18 of RPi has hardware capability to output PWM, the ledPin should be defined as 1 and set

its output mode to PWM_OUTPUT based on the corresponding chart for pins.

 pinMode(ledPin, PWM_OUTPUT);//pwm output mode

There are two “for” cycles in the next endless “while” cycle. The first makes the ledPin output PWM from 0% to

100% and the second makes the ledPin output PWM from 100% to 0%.

 while(1){

 for(i=0;i<1024;i++){

 pwmWrite(ledPin, i);

 delay(2);

 }

 delay(300);

 for(i=1023;i>=0;i--){

 pwmWrite(ledPin, i);

 delay(2);

 }

 delay(300);

 }

You can also adjust the rate of the state change of LED by changing the parameters of the delay() function in

the “for” cycle.

void pwmWrite (int pin, int value) ;

Writes the value to the PWM register for the given pin. The Raspberry Pi has one on-board PWM pin, pin

1 (BCM_GPIO 18, Phys 12) and the range is 0-1024. .

http://www.freenove.com/
mailto:support@freenove.com

Chapter 4 Analog & PWM 70 www.freenove.com █

█ support@freenove.com

Python Code 4.1.1 BreathingLED

First observe the project result, and then analyze the code.

1. Use cd command to enter 04.1.1_BreathingLED directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/04.1.1_BreathingLED

2. Use python command to execute python code “BreathingLED.py”.

python BreathingLED.py

After the program is executed, you'll see that LED is turned from on to off and then from off to on gradually

like breathing.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

import RPi.GPIO as GPIO

import time

LedPin = 12

def setup():

 global p

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output

 GPIO.output(LedPin, GPIO.LOW) # Set LedPin to low

 p = GPIO.PWM(LedPin, 1000) # Set Frequency to 1KHz

 p.start(0) # Duty Cycle = 0

def loop():

 while True:

 for dc in range(0, 101, 1): # Increase duty cycle: 0~100

 p.ChangeDutyCycle(dc) # Change duty cycle

 time.sleep(0.01)

 time.sleep(1)

 for dc in range(100, -1, -1): # Decrease duty cycle: 100~0

 p.ChangeDutyCycle(dc)

 time.sleep(0.01)

 time.sleep(1)

def destroy():

 p.stop()

 GPIO.output(LedPin, GPIO.LOW) # turn off led

 GPIO.cleanup()

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

LED is connected to the IO port called GPIO18. And LedPin is defined as 12 and set to output mode according

to the corresponding chart for pins. Then create a PWM instance and set the PWM frequency to 1000HZ, the

initial duty cycle to 0%.

http://www.freenove.com/
mailto:support@freenove.com

71 Chapter 4 Analog & PWM

█ www.freenove.com

support@freenove.com █

 LedPin = 12

def setup():

 global p

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output

 GPIO.output(LedPin, GPIO.LOW) # Set LedPin to low

 p = GPIO.PWM(LedPin, 1000) # Set Frequency to 1KHz

 p.start(0) # Duty Cycle = 0

There are two “for” cycles used to realize breathing LED in the next endless “while” cycle. The first makes the

ledPin output PWM from 0% to 100% and the second makes the ledPin output PWM from 100% to 0%.

 def loop():

 while True:

 for dc in range(0, 101, 1): # Increase duty cycle: 0~100

 p.ChangeDutyCycle(dc) # Change duty cycle

 time.sleep(0.01)

 time.sleep(1)

 for dc in range(100, -1, -1): # Decrease duty cycle: 100~0

 p.ChangeDutyCycle(dc)

 time.sleep(0.01)

 time.sleep(1)

The related functions of PWM are described as follows:

p = GPIO.PWM(channel, frequency)

To create a PWM instance:

p.start(dc)

To start PWM:，where dc is the duty cycle (0.0 <= dc <= 100.0)

p.ChangeFrequency(freq)

To change the frequency，where freq is the new frequency in Hz

p.ChangeDutyCycle(dc)

To change the duty cycle，where 0.0 <= dc <= 100.0

p.stop()

To stop PWM.

For more details about usage method for PWM of RPi.GPIO, please refer to:

https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/

http://www.freenove.com/
mailto:support@freenove.com
https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/

Chapter 5 RGBLED 72 www.freenove.com █

█ support@freenove.com

Chapter 5 RGBLED

In this chapter, we will learn how to control a RGBLED.

RGB LED has integrated 3 LEDs that can respectively emit red, green and blue light. And it has 4 pins. The

long pin (1) is the common port, that is, 3 LED 's positive or negative port. The RGB LED with common positive

port and its symbol are shown below. We can make RGB LED emit various colors of light by controlling these

3 LEDs to emit light with different brightness,

Red, green, and blue light are called 3 primary colors. When you combine these three primary-color light with

different brightness, it can produce almost all kinds of visible lights. Computer screens, single pixel of cell

phone screen, neon, and etc. are working under this principle.

RGB

If we use three 8 bit PWM to control the RGBLED, in theory, we can create 2
8
*2

8
*2

8
=16777216 (16 million)

color through different combinations.

Next, we will use RGBLED to make a colorful LED.

Project 5.1 Colorful LED

In this project, we will make a colorful LED. And we can control RGBLED to switch different colors automatically.

http://www.freenove.com/
mailto:support@freenove.com

73 Chapter 5 RGBLED

█ www.freenove.com

support@freenove.com █

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

RGBLED x1

Resistor 220Ω x3

Jumper

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 5 RGBLED 74 www.freenove.com █

█ support@freenove.com

Code

Since this project requires 3 PWM, but in RPi, only one GPIO has the hardware capability to output PWM, we

need to use the software to make the ordinary GPIO output PWM.

C Code 5.1.1 ColorfulLED

First observe the project result, and then analyze the code.

1. Use cd command to enter 05.1.1_ColorfulLED directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/05.1.1_ColorfulLED

2. Use following command to compile “ColorfulLED.c” and generate executable file “ColorfulLED”. Note: in

this project, the software PWM uses a multi-threading mechanism. So “-lpthread” option need to be add

the compiler.

gcc ColorfulLED.c –o ColorfulLED -lwiringPi –lpthread

3. And then run the generated by “ColorfulLED”.

sudo ./ColorfulLED

After the program is executed, you will see that the RGBLED shows light of different color randomly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#include <wiringPi.h>

#include <softPwm.h>

#include <stdio.h>

#define ledPinRed 0

#define ledPinGreen 1

#define ledPinBlue 2

void ledInit(void)

{

 softPwmCreate(ledPinRed, 0, 100);

 softPwmCreate(ledPinGreen,0, 100);

 softPwmCreate(ledPinBlue, 0, 100);

}

void ledColorSet(int r_val, int g_val, int b_val)

{

 softPwmWrite(ledPinRed, r_val);

 softPwmWrite(ledPinGreen, g_val);

 softPwmWrite(ledPinBlue, b_val);

}

int main(void)

{

 int r,g,b;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

 printf("setup wiringPi failed !");

http://www.freenove.com/
mailto:support@freenove.com

75 Chapter 5 RGBLED

█ www.freenove.com

support@freenove.com █

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

 return 1;

 }

 printf("Program is starting ...\n");

 ledInit();

 while(1){

 r=random()%100;

 g=random()%100;

 b=random()%100;

 ledColorSet(r,g,b);

 printf("r=%d, g=%d, b=%d \n",r,g,b);

 delay(300);

 }

 return 0;

}

First, in subfunction of ledInit(), create the software PWM control pins used to control the R G, RGBLED, B pin

respectively.

 void ledInit(void)

{

 softPwmCreate(ledPinRed, 0, 100);

 softPwmCreate(ledPinGreen,0, 100);

 softPwmCreate(ledPinBlue, 0, 100);

}

Then create subfunction, and set the PWM of three pins.

 void ledColorSet(int r_val, int g_val, int b_val)

{

 softPwmWrite(ledPinRed, r_val);

 softPwmWrite(ledPinGreen, g_val);

 softPwmWrite(ledPinBlue, b_val);

}

Finally, in the “while” cycle of main function, get three random numbers and specify them as the PWM duty

cycle, which will be assigned to the corresponding pins. So RGBLED can switch the color randomly all the time.

 while(1){

 r=random()%100;

 g=random()%100;

 b=random()%100;

 ledColorSet(r,g,b);

 printf("r=%d, g=%d, b=%d \n",r,g,b);

 delay(300);

 }

http://www.freenove.com/
mailto:support@freenove.com

Chapter 5 RGBLED 76 www.freenove.com █

█ support@freenove.com

The related function of Software PWM can be described as follws:

int softPwmCreate (int pin, int initialValue, int pwmRange) ;

This creates a software controlled PWM pin.

void softPwmWrite (int pin, int value) ;

This updates the PWM value on the given pin.

long random();

This function will return a random number.

For more details about Software PWM, please refer to: http://wiringpi.com/reference/software-pwm-library/

Python Code 5.1.1 ColorfulLED

First observe the project result, and then analyze the code.

1. Use cd command to enter 05.1.1_ColorfulLED directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/05.1.1_ColorfulLED

2. Use python command to execute python code “ColorfulLED.py”.

python ColorfulLED.py

After the program is executed, you will see that the RGBLED shows light of different color randomly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

import RPi.GPIO as GPIO

import time

import random

pins = {'pin_R':11, 'pin_G':12, 'pin_B':13} # pins is a dict

def setup():

 global p_R,p_G,p_B

 print ('Program is starting ... ')

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 for i in pins:

 GPIO.setup(pins[i], GPIO.OUT) # Set pins' mode is output

 GPIO.output(pins[i], GPIO.HIGH) # Set pins to high(+3.3V) to off led

 p_R = GPIO.PWM(pins['pin_R'], 2000) # set Frequece to 2KHz

 p_G = GPIO.PWM(pins['pin_G'], 2000)

 p_B = GPIO.PWM(pins['pin_B'], 2000)

 p_R.start(0) # Initial duty Cycle = 0

 p_G.start(0)

 p_B.start(0)

def setColor(r_val,g_val,b_val):

 p_R.ChangeDutyCycle(r_val) # Change duty cycle

 p_G.ChangeDutyCycle(g_val)

 p_B.ChangeDutyCycle(b_val)

def loop():

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/reference/software-pwm-library/

77 Chapter 5 RGBLED

█ www.freenove.com

support@freenove.com █

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 while True :

 r=random.randint(0,100)#get a random in (0,100)

 g=random.randint(0,100)

 b=random.randint(0,100)

 setColor(r,g,b)#set random as a duty cycle value

 print ('r=%d, g=%d, b=%d ' %(r ,g, b))

 time.sleep(0.3)

def destroy():

 p_R.stop()

 p_G.stop()

 p_B.stop()

 GPIO.cleanup()

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

In last chapter, we have learned how to use python language to make a pin output PWM. In this project, we

let three pins output PWM, and the usage is exactly the same as last chapter. In the “while” cycle of “loop”

function, we first obtain three random numbers, and then specify these three random numbers as the PWM

value of the three pins.o that the RGBLED switching of different colors randomly.

 def loop():

 while True :

 r=random.randint(0,100)

 g=random.randint(0,100)

 b=random.randint(0,100)

 setColor(r,g,b)

 print ('r=%d, g=%d, b=%d ' %(r ,g, b))

 time.sleep(0.3)

About function randint():

random.randint(a, b)

The function can returns a random integer within the specified range (a, b).

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 78 www.freenove.com █

█ support@freenove.com

Chapter 6 Buzzer

In this chapter, we will learn a component that can sound, buzzer.

Project 6.1 Doorbell

We will make this kind of doorbell: when the button is pressed, the buzzer sounds; and when the button is

released, the buzzer stops sounding.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

NPN transistorx1

(S8050)

Active buzzer x1

Push button x1

Resistor 1kΩ x1

Resistor 10kΩ x2

http://www.freenove.com/
mailto:support@freenove.com

79 Chapter 6 Buzzer

█ www.freenove.com

support@freenove.com █

Component knowledge

Buzzer

Buzzer is a sounding component, which is widely used in electronic devices such as calculator, electronic

warning clock, alarm. Buzzer has active and passive type. Active buzzer has oscillator inside, and it will sound

as long as it is supplied with power. Passive buzzer requires external oscillator signal (generally use PWM with

different frequency) to make a sound.

Active buzzer Passive buzzer

Active buzzer is easy to use. Generally, it can only make a specific frequency of sound. Passive buzzer

requires an external circuit to make a sound, but it can be controlled to make a sound with different

frequency. The resonant frequency of the passive buzzer is 2kHz, which means the passive buzzer is loudest

when its resonant frequency is 2kHz.

Next, we will use an active buzzer to make a doorbell and a passive buzzer to make an alarm.

Transistor

Due to the current operating of buzzer is so large that GPIO of RPi output capability can not be satisfied, a

transistor of NPN type is needed here to amplify the current.

Transistor, the full name: semiconductor transistor, is a semiconductor device that controls current. Transistor

can be used to amplify weak signal, or works as a switch. It has three electrodes(PINs): base (b), collector (c)

and emitter (e). When there is current passing between "be", "ce" will allow several-fold current (transistor

magnification) pass, at this point, transistor works in the amplifying area. When current between "be" exceeds

a certain value, "ce" will not allow current to increase any longer, at this point, transistor works in the saturation

area. Transistor has two types shown below: PNP and NPN,

PNP transistor NPN transistor

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 80 www.freenove.com █

█ support@freenove.com

According to the transistor's characteristics, it is often used as a switch in digital circuits. For micro-controller's

capacity of output current is very weak, we will use transistor to amplify current and drive large-current

components.

When use NPN transistor to drive buzzer, we often adopt the following method. If GPIO outputs high level,

current will flow through R1, the transistor gets conducted, and the buzzer make a sound. If GPIO outputs low

level, no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

When use PNP transistor to drive buzzer, we often adopt the following method. If GPIO outputs low level,

current will flow through R1, the transistor gets conducted, buzzer make a sound. If GPIO outputs high level,

no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

NPN transistor to drive buzzer

PNP transistor to drive buzzer

http://www.freenove.com/
mailto:support@freenove.com

81 Chapter 6 Buzzer

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

Note: in this circuit, the power supply for buzzer is 5V, and pull-up resistor of the button connected to the

power 3.3V. The buzzer can work when connected to power 3.3V, but it will reduce the loudness.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 82 www.freenove.com █

█ support@freenove.com

Code

In this project, buzzer is controlled by the button. When the button is pressed, the buzzer sounds. And when

the button is released, the buzzer stops sounding. In the logic, it is the same to using button to control LED.

C Code 6.1.1 Doorbell

First observe the project result, and then analyze the code.

1. Use cd command to enter 06.1.1_Doorbell directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/06.1.1_Doorbell

2. Use following command to compile “Doorbell.c” and generate executable file “Doorbell.c”.

gcc Doorbell.c –o Doorbell -lwiringPi

3. Then run the generated file “Doorbell”.

sudo ./Doorbell

After the program is executed, press the button, then buzzer sounds. And when the button is release, the

buzzer will stop sounding.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#include <wiringPi.h>

#include <stdio.h>

#define buzzeRPin 0 //define the buzzeRPin

#define buttonPin 1 //define the buttonPin

int main(void)

{

 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 pinMode(buzzeRPin, OUTPUT);

 pinMode(buttonPin, INPUT);

 pullUpDnControl(buttonPin, PUD_UP); //pull up to high level

 while(1){

 if(digitalRead(buttonPin) == LOW){ //button has pressed down

 digitalWrite(buzzeRPin, HIGH); //buzzer on

 printf("buzzer on...\n");

 }

 else { //button has released

 digitalWrite(buzzeRPin, LOW); //buzzer off

 printf("...buzzer off\n");

 }

 }

http://www.freenove.com/
mailto:support@freenove.com

83 Chapter 6 Buzzer

█ www.freenove.com

support@freenove.com █

29

30

31

 return 0;

}

The code is exactly the same to using button to control LED logically. You can try to use the PNP transistor to

achieve the function of his circuit once again.

Python Code 6.1.1 Doorbell

First observe the project result, then analyze the code.

1. Use cd command to enter 06.1.1_Doorbell directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/06.1.1_Doorbell

2. Use python command to execute python code “Doorbell.py”.

python Doorbell.py

After the program is executed, press the button, then buzzer sounds. And when the button is released, the

buzzer will stop sounding.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

import RPi.GPIO as GPIO

buzzerPin = 11 # define the buzzerPin

buttonPin = 12 # define the buttonPin

def setup():

 print ('Program is starting...')

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(buzzerPin, GPIO.OUT) # Set buzzerPin's mode is output

 GPIO.setup(buttonPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set buttonPin's mode is

input, and pull up to high level(3.3V)

def loop():

 while True:

 if GPIO.input(buttonPin)==GPIO.LOW:

 GPIO.output(buzzerPin,GPIO.HIGH)

 print ('buzzer on ...')

 else :

 GPIO.output(buzzerPin,GPIO.LOW)

 print ('buzzer off ...')

def destroy():

 GPIO.output(buzzerPin, GPIO.LOW) # buzzer off

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 84 www.freenove.com █

█ support@freenove.com

31

32

33

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

The code is exactly the same to using button to control LED logically. You can try to use the PNP transistor

to achieve the function of his circuit once again.

Project 6.2 Alertor

Next, we will use a passive buzzer to make an alarm.

Component list and the circuit part is the similar to last section. In the Doorbell circuit only the active buzzer

needs to be replaced with a passive buzzer.

Code

In this project, the buzzer alarm is controlled by the button. Press the button, then buzzer sounds. If you

release the button, the buzzer will stop sounding. In the logic, it is the same to using button to control LED.

In the control method, passive buzzer requires PWM of certain frequency to sound.

C Code 6.2.1 Alertor

First observe the project result, and then analyze the code.

1. Use cd command to enter 06.2.1_Alertor directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/06.2.1_Alertor

2. Use following command to compile “Alertor.c” and generate executable file “Alertor”. “-lm” and “-lpthread”

compiler options are needed to add here.

gcc Alertor.c –o Alertor –lwiringPi –lm -lpthread

3. Then run the generated file “Alertor”.

sudo ./ Alertor

After the program is executed, press the button, then buzzer sounds. And when the button is release, the

buzzer will stop sounding.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

#include <wiringPi.h>

#include <stdio.h>

#include <softTone.h>

#include <math.h>

#define buzzeRPin 0 //define the buzzeRPin

#define buttonPin 1 //define the buttonPin

void alertor(int pin){

 int x;

 double sinVal, toneVal;

 for(x=0;x<360;x++){ // The frequency is based on the sine curve.

 sinVal = sin(x * (M_PI / 180));

 toneVal = 2000 + sinVal * 500;

 softToneWrite(pin,toneVal);

 delay(1);

http://www.freenove.com/
mailto:support@freenove.com

85 Chapter 6 Buzzer

█ www.freenove.com

support@freenove.com █

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 }

}

void stopAlertor(int pin){

 softToneWrite(pin,0);

}

int main(void)

{

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 pinMode(buzzeRPin, OUTPUT);

 pinMode(buttonPin, INPUT);

 softToneCreate(buzzeRPin);

 pullUpDnControl(buttonPin, PUD_UP); //pull up to high level

 while(1){

 if(digitalRead(buttonPin) == LOW){ //button has pressed down

 alertor(buzzeRPin); //buzzer on

 printf("alertor on...\n");

 }

 else { //button has released

 stopAlertor(buzzeRPin); //buzzer off

 printf("...buzzer off\n");

 }

 }

 return 0;

}

The code is the same to the active buzzer logically, but the way to control the buzzer is different. Passive

buzzer requires PWM of certain frequency to control, so you need to create a software PWM pin though

softToneCreate (buzzeRPin). Here softTone is dedicated to generate square wave with variable frequency and

duty cycle fixed to 50%, which is a better choice for controlling the buzzer.

 softToneCreate(buzzeRPin);

In the while cycle of main function, when the button is pressed, subfunction alertor() will be called and the

alertor will issue a warning sound. The frequency curve of the alarm is based on the sine curve. We need to

calculate the sine value from 0 to 360 degree and multiply a certain value (here is 500) and plus the resonant

frequency of buzzer. We can set the PWM frequency through softToneWrite (pin, toneVal).

 void alertor(int pin){

 int x;

 double sinVal, toneVal;

 for(x=0;x<360;x++){ //The frequency is based on the sine curve.

 sinVal = sin(x * (M_PI / 180));

 toneVal = 2000 + sinVal * 500;

 softToneWrite(pin,toneVal);

 delay(1);

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 86 www.freenove.com █

█ support@freenove.com

 }

}

If you want to close the buzzer, just set PWM frequency of the buzzer pin to 0.

 void stopAlertor(int pin){

 softToneWrite(pin,0);

}

The related functions of softTone is described as follows:

int softToneCreate (int pin) ;

This creates a software controlled tone pin.

void softToneWrite (int pin, int freq) ;

This updates the tone frequency value on the given pin.

For more details about softTone, please refer to :http://wiringpi.com/reference/software-tone-library/

Python Code 6.2.1 Alertor

First observe the project result, and then analyze the code.

1. Use cd command to enter 06.2.1_Alertor directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/06.2.1_Alertor

2. Use the python command to execute the Python code “Alertor.py”.

python Alertor.py

After the program is executed, press the button, then the buzzer sounds. When the button is released, the

buzzer will stop sounding.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

import RPi.GPIO as GPIO

import time

import math

buzzerPin = 11 # define the buzzerPin

buttonPin = 12 # define the buttonPin

def setup():

 global p

 print ('Program is starting...')

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(buzzerPin, GPIO.OUT) # Set buzzerPin's mode is output

 GPIO.setup(buttonPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set buttonPin's mode is

input, and pull up to high level(3.3V)

 p = GPIO.PWM(buzzerPin, 1)

 p.start(0);

def loop():

 while True:

 if GPIO.input(buttonPin)==GPIO.LOW:

 alertor()

 print ('buzzer on ...')

 else :

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/reference/software-tone-library/

87 Chapter 6 Buzzer

█ www.freenove.com

support@freenove.com █

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

 stopAlertor()

 print ('buzzer off ...')

def alertor():

 p.start(50)

 for x in range(0,361): #frequency of the alarm along the sine wave change

 sinVal = math.sin(x * (math.pi / 180.0)) #calculate the sine value

 toneVal = 2000 + sinVal * 500 #Add to the resonant frequency with a Weighted

 p.ChangeFrequency(toneVal) #output PWM

 time.sleep(0.001)

def stopAlertor():

 p.stop()

def destroy():

 GPIO.output(buzzerPin, GPIO.LOW) # buzzer off

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

The code is the same to the active buzzer logically, but the way to control the buzzer is different. Passive

buzzer requires PWM of certain frequency to control, so you need to create a software PWM pin through

softToneCreate (buzzeRPin). The way to create PWM is also introduced before in the sections about

BreathingLED and RGBLED.

 def setup():

 global p

 print ('Program is starting...')

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(buzzeRPin, GPIO.OUT) # Set buzzeRPin's mode is output

 GPIO.setup(buttonPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set buttonPin's mode is

input, and pull up to high level(3.3V)

 p = GPIO.PWM(buzzeRPin, 1)

 p.start(0);

In the while cycle of main function, when the button is pressed, subfunction alertor() will be called and the

alertor will issue a warning sound. The frequency curve of the alarm is based on the sine curve. We need to

calculate the sine value from 0 to 360 degree and multiply a certain value (here is 500) and plus the resonant

frequency of buzzer. We can set the PWM frequency through p.ChangeFrequency(toneVal).

 def alertor():

 p.start(50)

 for x in range(0,361):

 sinVal = math.sin(x * (math.pi / 180.0))

 toneVal = 2000 + sinVal * 500

http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer 88 www.freenove.com █

█ support@freenove.com

 p.ChangeFrequency(toneVal)

 time.sleep(0.001)

When the button is released, the buzzer will be closed.

 def stopAlertor():

 p.stop()

http://www.freenove.com/
mailto:support@freenove.com

89 Chapter 7 PCF8591

█ www.freenove.com

support@freenove.com █

Chapter 7 PCF8591

We have learned how to control the brightness of LED through PWM and understood that PWM is not the

real analog before. In this chapter, we will learn how to read analog quantities through PCF8591, convert it

into digital quantity and convert the digital quantity into analog output. That is, ADC and DAC.

Project 7.1 Read the Voltage of Potentiometer

In this project, we will use the ADC function of PCF8591 to read the voltage value of potentiometer. And then

output the voltage value through the DAC to control the brightness of LED.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

Rotary potentiometer x1

PCF8591 x1

Resistor 10kΩ x2

Resistor 220Ω x1

LED x1

http://www.freenove.com/
mailto:support@freenove.com

Chapter 7 PCF8591 90 www.freenove.com █

█ support@freenove.com

Circuit knowledge

ADC

ADC, Analog-to-Digital Converter, is a device used to convert analog to digital. The range of the ADC on

PCF8591 is 8 bits, that means the resolution is 2^8=256, and it represents the range (here is 3.3V) will be

divided equally to 256 parts. The analog of each range corresponds to one ADC values. So the more bits ADC

has, the denser the partition of analog will be, also the higher precision of the conversion will be.

Subsection 1: the analog in rang of 0V-3.3/256 V corresponds to digital 0;

Subsection 2: the analog in rang of 3.3 /256 V-2*3.3 /256V corresponds to digital 1;

…

The following analog will be divided accordingly.

DAC

DAC, that is, Digital-to-Analog Converter, is the reverse process of ADC. The digital I/O port can output high

level and low level, but can not output an intermediate voltage value, which can be solved by DAC. PCF8591

has a DAC output pin with 8-bit accuracy, which can divide VDD (here is 3.3V) into 2
8
=256 parts. For example,

when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when the digital quantity is 128,

the output voltage value is 3.3/256 *128=1.65V, the higher accuracy of PCF8591 is, the higher the accuracy

of output voltage value is.

http://www.freenove.com/
mailto:support@freenove.com

91 Chapter 7 PCF8591

█ www.freenove.com

support@freenove.com █

Component knowledge

Potentiometer

Potentiometer is a resistive element with three Terminal part and the resistance can be adjusted according to

a certain variation. Potentiometer is often made up by resistance and removable brush. When the brush moves

along the resistor body, there will be resistance or voltage that has a certain relationship with displacement

on the output side (3). Figure shown below is the linear sliding potentiometer and its symbol.

What between potentiometer pin 1 and pin 2 is the resistor body, and pins 3 is connected to brush. When

brush moves from pins 1 to pin 2, the resistance between pin 1, and pin 3 will increase up to body resistance

linearly, and the resistance between pin 2 and pin 3 will decrease down to 0 linearly.

In the circuit. The both sides of resistance body are often connected to the positive and negative electrode of

the power. When you slide the brush pin 3, you can get a certain voltage in the range of the power supply.

Rotary potentiometer

Rotary potentiometer and linear potentiometer have similar function; the only difference is: the resistance is

adjusted through rotating the potentiometer.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 7 PCF8591 92 www.freenove.com █

█ support@freenove.com

PCF8591

The PCF8591 is a single-chip, single-supply low power 8-bit CMOS data acquisition device with four analog

inputs, one analog output and a serial I2C-bus interface.

FEATURES

 Single power supply

 Operating supply voltage 2.5 V to 6 V

 Low standby current

 Serial input/output via I2C-bus

 Address by 3 hardware address pins

 Sampling rate given by I2C-bus speed

 differential inputs

 Auto-incremented channel selection

 Analog voltage ranges from VSS to VDD

 On-chip track and hold circuit

 8-bit successive approximation A/D conversion

 Multiplying DAC with one analog output.

 4 analog inputs programmable as single-ended

or

PINNING

SYMBOL PIN DESCRIPTION TOP VIEW

AIN0 1

Analog inputs (A/D converter)

AIN1 2

AIN2 3

AIN3 4

A0 5

Hardware address A1 6

A2 7

Vss 8 Negative supply voltage

SDA 9 I2C-bus data input/output

SCL 10 I2C-bus clock input

OSC 11 Oscillator input/output

EXT 12 external/internal switch for oscillator

input

AGND 13 Analog ground

Vref 14 Voltage reference input

AOUT 15 Analog output(D/A converter)

Vdd 16 Positive supply voltage

For more details about PCF8591, please refer to datasheet.

I2C communication

I2C(Inter-Integrated Circuit) is a two-wire serial communication mode, which can be used to connection of

micro controller and its peripheral equipment. Devices using I2C communication must be connected to the

serial data (SDA) line, and serial clock (SCL) line (called I2C bus). Each device has a unique address and can be

used as a transmitter or receiver to communicate with devices connected to the bus.

http://www.freenove.com/
mailto:support@freenove.com

93 Chapter 7 PCF8591

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 7 PCF8591 94 www.freenove.com █

█ support@freenove.com

Configure I2C

Enable I2C

The I2C interface raspberry pie is closed in default. You need to open it manually. You can enable the I2C

interface in the following way.

Type command in the terminal:

sudo raspi-config

Then open the following dialog box:

Choose “5 Interfacing Options”“P5 I2C”“Yes”“Finish” in order and restart your RPi later. Then the I2C

module is started.

Type a command to check whether the I2C module is started:

lsmod | grep i2c

If the I2C module has been started, the following content will be shown:

http://www.freenove.com/
mailto:support@freenove.com

95 Chapter 7 PCF8591

█ www.freenove.com

support@freenove.com █

Install I2C-Tools

Type the command to install I2C-Tools.

sudo apt-get install i2c-tools

I2C device address detection:

i2cdetect –y 1

Here 48 (HEX) is the I2C address of PCF8591.

Code

C Code 7.1.1 pcf8591

First observe the project result, and then analyze the code.

1. Use cd command to enter 07.1.1_ PCF8591 directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/07.1.1_PCF8591

2. Use following command to compile “PCF8591.c” and generate executable file “PCF8591”.

gcc PCF8591.c –o PCF8591 –lwiringPi

3. Then run the generated file “PCF8591”.

sudo ./PCF8591

After the program is executed, shift the potentiometer, then the terminal will print out the potentiometer

voltage value and the converted digital content. When the voltage is greater than 1.6V (voltage need to turn

on red LED), LED starts emitting light. If you continue to increase the output voltage, the LED will become

more bright gradually.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 7 PCF8591 96 www.freenove.com █

█ support@freenove.com

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#include <wiringPi.h>

#include <pcf8591.h>

#include <stdio.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

int main(void){

 int value;

 float voltage;

 wiringPiSetup();

 pcf8591Setup(pinbase,address);

 while(1){

 value = analogRead(A0); //read A0 pin

 analogWrite(pinbase+0,value);

 voltage = (float)value / 255.0 * 3.3; // calculate voltage

 printf("ADC value : %d ,\tVoltage : %.2fV\n",value,voltage);

 delay(100);

 }

}

The default I2C address of PCF8591 is 0x48. The pinbase is an any value greater than or equal to 64. And we

have defined the ADC input channel A1, A2, A0, A3 of PCF8591.

 #define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

In the main function, after PCF8591 is initialized by pcf8591Setup(pinbase, address), you can use the function

analogRead() and analogWrite() to operate the ADC and DAC.

 pcf8591Setup(pinbase,address);

In the “while” cycle, analogRead (A0) is used to read the ADC value of the A0 port (connected potentiometer),

then the read ADC value is output through analogWrite(). And then the corresponding actual voltage value

will be calculated and displayed.

 while(1){

 value = analogRead(A0); //read A0 pin

 analogWrite(pinbase+0,value);

 voltage = (float)value / 255.0 * 3.3; // calculate voltage

 printf("ADC value : %d ,\tVoltage : %.2fV\n",value,voltage);

http://www.freenove.com/
mailto:support@freenove.com

97 Chapter 7 PCF8591

█ www.freenove.com

support@freenove.com █

 delay(100);

 }

Details about analogRead() and analogWrite():

void analogWrite (int pin, int value) ;

This writes the given value to the supplied analog pin. You will need to register additional analog modules

to enable this function for devices.

int analogRead (int pin) ;

This returns the value read on the supplied analog input pin. You will need to register additional analog

modules to enable this function for devices.

For more detailed instructions about PCF8591 of wiringPi, please refer to:

http://wiringpi.com/extensiones/i2c-pcf8591/

Python Code 7.1.1 pcf8591

First install a smbus module, and the command is as follows:

sudo apt-get install python-smbus

After the installation is completed, operate according to the following steps. Observe the project result, and

then analyze the code.

1. Use cd command to enter 07.1.1_pcf8591 directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/07.1.1_pcf8591

2. Use the python command to execute the Python code “pcf8591.py”.

python pcf8591.py

After the program is executed, shift the potentiometer, then the terminal will print out the potentiometer

voltage value and the converted digital content. When the voltage is greater than 1.6V (voltage need to turn

on red LED), LED starts emitting light. If you continue to increase the output voltage, the LED will become

more bright gradually.

The following is the code:

1

2

3

4

5

6

7

import smbus

import time

address = 0x48 #default address of PCF8591

bus=smbus.SMBus(1)

cmd=0x40 #command

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/extensions/i2c-pcf8591/

Chapter 7 PCF8591 98 www.freenove.com █

█ support@freenove.com

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

def analogRead(chn):#read ADC value,chn:0,1,2,3

 value = bus.read_byte_data(address,cmd+chn)

 return value

def analogWrite(value):#write DAC value

 bus.write_byte_data(address,cmd,value)

def loop():

 while True:

 value = analogRead(0) #read the ADC value of channel 0

 analogWrite(value) #write the DAC value

 voltage = value / 255.0 * 3.3 #calculate the voltage value

 print ('ADC Value : %d, Voltage : %.2f'%(value,voltage))

 time.sleep(0.01)

def destroy():

 bus.close()

if __name__ == '__main__':

 print ('Program is starting ... ')

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

First, define the I2C address and control byte of PCF8591, and then instantiate object bus of SMBus, which

can be used to operate ADC and DAC of PCF8591.

 address = 0x48 # default address of PCF8591

bus=smbus.SMBus(1)

cmd=0x40 # command

This subfunction is used to read the ADC. Its parameter “chn” represents the input channel number: 0, 1, 2, 3.

Its return value is the read ADC value.

 def analogRead(chn):# read ADC value，chn:0,1,2,3

 value = bus.read_byte_data(address,cmd+chn)

 return value

This subfunction is used to write DAC. Its parameter “value” represents the digital quality to be written,

between 0-255.

 def analogWrite(value):# write DAC value

 bus.write_byte_data(address,cmd,value)

In the “while” cycle, first read the ADC value of channel 0, and then write the value as the DAC digital quality

and output corresponding voltage in the out pin of PCF8591. Then calculate the corresponding voltage value

and print it out.

 def loop():

 while True:

http://www.freenove.com/
mailto:support@freenove.com

99 Chapter 7 PCF8591

█ www.freenove.com

support@freenove.com █

 value = analogRead(0) #read the ADC value of channel 0

 analogWrite(value) # write ADC value

 voltage = value / 255.0 * 3.3 # calculate voltage value

 print ('ADC Value : %d, Voltage : %.2f'%(value,voltage))

 time.sleep(0.01)

About smbus module:

smbus Module

That is System Management Bus.This module defines an object type that allows SMBus transactions on

hosts running the Linux kernel. The host kernel must have I2C support, I2C device interface support, and a

bus adapter driver. All of these can be either built-in to the kernel, or loaded from modules.

In Python, you can use help(smbus) to view the relevant function and their descriptions.

bus=smbus.SMBus(1)：Create an SMBus class object.

bus.read_byte_data(address,cmd+chn)： Read a byte of data from an address and return it.

bus.write_byte_data(address,cmd,value)： Write a byte of data to an address.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 8 Potentiometer & LED 100 www.freenove.com █

█ support@freenove.com

Chapter 8 Potentiometer & LED

We have learned how to use ADC and DAC before. When using DAC output analog to drive LED, we found

that, when the output voltage is less than led turn-on voltage, the LED does not light, the output analog

voltage is greater than the LED voltage, the LED will light. This leads to a certain degree of waste of resources.

Therefore, in the control of LED brightness, we should choose a more reasonable way of PWM control. In this

chapter, we learn to control the brightness of LED through a potentiometer.

Project 8.1 Soft Light

In this project, we will make a soft light. Use PCF8591 to read ADC value of potentiometers and map it to duty

cycle ratio of PWM used to control the brightness of LED. Then you can make the LED brightness changed by

shifting the potentiometer.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

Rotary potentiometer x1

PCF8591 x1

Resistor 10kΩ x2

Resistor 220Ω x1

LED x1

http://www.freenove.com/
mailto:support@freenove.com

101 Chapter 8 Potentiometer & LED

█ www.freenove.com

support@freenove.com █

Circuit

The circuit of this project is similar to the one in last chapter. The only difference is that the pin used to control

LED is different.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 8 Potentiometer & LED 102 www.freenove.com █

█ support@freenove.com

Code

C Code 8.1.1 Softlight

First observe the project result, and then analyze the code.

1. Use cd command to enter 08.2.1_Softlight directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/08.1.1_Softlight

2. Use following command to compile “Softlight.c” and generate executable file “Softlight”.

gcc Softlight.c –o Softlight–lwiringPi –lpthread

3. Then run the generated file “Softlight”.

sudo ./Softlight

After the program is executed, shift the potentiometer, then the terminal window will print out the voltage

value of the potentiometer and the converted digital quantity. And brightness of LED will be changed

consequently.

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

#include <wiringPi.h>

#include <pcf8591.h>

#include <stdio.h>

#include <softPwm.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

#define ledPin 0

int main(void){

 int value;

 float voltage;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 softPwmCreate(ledPin,0,100);

 pcf8591Setup(pinbase,address);

 while(1){

 value = analogRead(A0); //read A0 pin

 softPwmWrite(ledPin,value*100/255);

 voltage = (float)value / 255.0 * 3.3; // calculate voltage

 printf("ADC value : %d ,\tVoltage : %.2fV\n",value,voltage);

 delay(100);

http://www.freenove.com/
mailto:support@freenove.com

103 Chapter 8 Potentiometer & LED

█ www.freenove.com

support@freenove.com █

30

31

32

 }

 return 0;

}

In the code, read ADC value of potentiometers and map it to duty cycle of PWM to control LED brightness.

Python Code 8.1.1 Softlight

First observe the project result, and then analyze the code.

1. Use cd command to enter 08.2.1_Softlight directory of Python code

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/08.1.1_Softlight

2. Use the python command to execute the Python code “Softlight.py”.

python Softlight.py

After the program is executed, shift the potentiometer, then the terminal window will print out the voltage

value of the potentiometer and the converted digital quantity. And brightness of LED will be changed

consequently.

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

import RPi.GPIO as GPIO

import smbus

import time

address = 0x48

bus=smbus.SMBus(1)

cmd=0x40

ledPin = 11

def analogRead(chn):

 value = bus.read_byte_data(address,cmd+chn)

 return value

def analogWrite(value):

 bus.write_byte_data(address,cmd,value)

def setup():

 global p

 GPIO.setmode(GPIO.BOARD)

 GPIO.setup(ledPin,GPIO.OUT)

 GPIO.output(ledPin,GPIO.LOW)

 p = GPIO.PWM(ledPin,1000)

 p.start(0)

def loop():

 while True:

 value = analogRead(0) #read A0 pin

 p.ChangeDutyCycle(value*100/255) #Convert ADC value to duty cycle of PWM

 voltage = value / 255.0 * 3.3 #calculate voltage

http://www.freenove.com/
mailto:support@freenove.com

Chapter 8 Potentiometer & LED 104 www.freenove.com █

█ support@freenove.com

31

32

33

34

35

36

37

38

39

40

41

42

43

44

 print ('ADC Value : %d, Voltage : %.2f'%(value,voltage))

 time.sleep(0.01)

def destroy():

 bus.close()

 GPIO.cleanup()

if __name__ == '__main__':

 print ('Program is starting ... ')

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

In the code, read ADC value of potentiometers and map it to duty cycle of PWM to control LED brightness.

http://www.freenove.com/
mailto:support@freenove.com

105 Chapter 9 Potentiometer & RGBLED

█ www.freenove.com

support@freenove.com █

Chapter 9 Potentiometer & RGBLED

In this chapter, we will use 3 potentiometers to control the brightness of 3 LEDs of RGBLED to make it show

different colors.

Project 9.1 Colorful Light

In this project, 3 potentiometers are used to control RGBLED and the principle is the same with the front soft

light. Namely, read the voltage value of the potentiometer and then convert it to PWM used to control LED

brightness. Difference is that the front one need only one LED, but this project needs a RGBLED（3 LEDs）.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

Jumper

Rotary potentiometer x3

PCF8591 x1

Resistor 10kΩ x2

Resistor 220Ω x3

RGBLED x1

http://www.freenove.com/
mailto:support@freenove.com

Chapter 9 Potentiometer & RGBLED 106 www.freenove.com █

█ support@freenove.com

Circuit

Schematic diagram

http://www.freenove.com/
mailto:support@freenove.com

107 Chapter 9 Potentiometer & RGBLED

█ www.freenove.com

support@freenove.com █

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 9 Potentiometer & RGBLED 108 www.freenove.com █

█ support@freenove.com

Code

C Code 9.1.1 Colorful Softlight

First observe the project result, and then analyze the code.

1. Use cd command to enter 09.1.1_ColorfulSoftlight directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/09.1.1_ColorfulSoftlight

2. Use following command to compile "ColorfulSoftlight.c" and generate executable file "ColorfulSoftlight".

gcc ColorfulSoftlight.c –o ColorfulSoftlight –lwiringPi –lpthread

3. Then run the generated file "ColorfulSoftlight".

sudo ./ColorfulSoftlight

After the program is executed, rotate one of potentiometers, then the color of RGBLED will change

consequently. And the terminal window will print out the ADC value of each potentiometer.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#include <wiringPi.h>

#include <pcf8591.h>

#include <stdio.h>

#include <softPwm.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

#define ledRedPin 3 //define 3 pins of RGBLED

#define ledGreenPin 2

#define ledBluePin 0

int main(void){

 int val_Red,val_Green,val_Blue;

 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 softPwmCreate(ledRedPin,0,100); //create 3 PWM output pins for RGBLED

 softPwmCreate(ledGreenPin,0,100);

http://www.freenove.com/
mailto:support@freenove.com

109 Chapter 9 Potentiometer & RGBLED

█ www.freenove.com

support@freenove.com █

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 softPwmCreate(ledBluePin,0,100);

 pcf8591Setup(pinbase,address); //initialize PCF8591

 while(1){

 val_Red = analogRead(A0); //read 3 potentiometers

 val_Green = analogRead(A1);

 val_Blue = analogRead(A2);

 softPwmWrite(ledRedPin,val_Red*100/255); //map the read value of

potentiometers into PWM value and output it

 softPwmWrite(ledGreenPin,val_Green*100/255);

 softPwmWrite(ledBluePin,val_Blue*100/255);

 //print out the read ADC value

 printf("ADC value val_Red: %d ,\tval_Green: %d ,\tval_Blue: %d

\n",val_Red,val_Green,val_Blue);

 delay(100);

 }

 return 0;

}

In the code, read the ADC value of 3 potentiometers and map it into PWM duty cycle to control the control

3 LEDs with different color of RGBLED, respectively.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 9 Potentiometer & RGBLED 110 www.freenove.com █

█ support@freenove.com

Python Code 9.1.1 ColorfulSoftlight

First observe the project result, and then analyze the code.

1. Use cd command to enter 09.1.1_ColorfulSoftlight directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/09.1.1_ ColorfulSoftlight

2. Use python command to execute python code "ColorfulSoftlight.py".

python ColorfulSoftlight.py

After the program is executed, rotate one of potentiometers, then the color of RGBLED will change

consequently. And the terminal window will print out the ADC value of each potentiometer.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

import RPi.GPIO as GPIO

import smbus

import time

address = 0x48

bus=smbus.SMBus(1)

cmd=0x40

ledRedPin = 15 #define 3 pins of RGBLED

ledGreenPin = 13

ledBluePin = 11

def analogRead(chn): #read ADC value

 bus.write_byte(address,cmd+chn)

 value = bus.read_byte(address)

 value = bus.read_byte(address)

 return value

def analogWrite(value):

 bus.write_byte_data(address,cmd,value)

def setup():

 global p_Red,p_Green,p_Blue

 GPIO.setmode(GPIO.BOARD)

 GPIO.setup(ledRedPin,GPIO.OUT) #set 3 pins of RGBLED to output mode

 GPIO.setup(ledGreenPin,GPIO.OUT)

 GPIO.setup(ledBluePin,GPIO.OUT)

 p_Red = GPIO.PWM(ledRedPin,1000) #configure PWM to 3 pins of RGBLED

 p_Red.start(0)

 p_Green = GPIO.PWM(ledGreenPin,1000)

 p_Green.start(0)

 p_Blue = GPIO.PWM(ledBluePin,1000)

 p_Blue.start(0)

http://www.freenove.com/
mailto:support@freenove.com

111 Chapter 9 Potentiometer & RGBLED

█ www.freenove.com

support@freenove.com █

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

def loop():

 while True:

 value_Red = analogRead(0) #read ADC value of 3 potentiometers

 value_Green = analogRead(1)

 value_Blue = analogRead(2)

 p_Red.ChangeDutyCycle(value_Red*100/255) #map the read value of potentiometers

into PWM value and output it

 p_Green.ChangeDutyCycle(value_Green*100/255)

 p_Blue.ChangeDutyCycle(value_Blue*100/255)

 #print read ADC value

 print ('ADC Value

value_Red: %d ,\tvlue_Green: %d ,\tvalue_Blue: %d'%(value_Red,value_Green,value_Blue))

 time.sleep(0.01)

def destroy():

 bus.close()

 GPIO.cleanup()

if __name__ == '__main__':

 print 'Program is starting ... '

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

In the code, read the ADC value of 3 potentiometers and map it into PWM duty cycle to control the control

3 LEDs with different color of RGBLED, respectively.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 10 Photoresistor & LED 112 www.freenove.com █

█ support@freenove.com

Chapter 10 Photoresistor & LED

In this chapter, we will learn how to use photoresistor.

Project 10.1 NightLamp

Photoresistor is very sensitive to illumination strength. So we can use this feature to make a nightlamp, when

ambient light gets darker, LED will become brighter automatically, and when the ambient light gets brighter,

LED will become darker automatically.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

Photoresistor x1

PCF8591 x1

Resistor 10kΩ x3

Resistor 220Ω x1

LED x1

http://www.freenove.com/
mailto:support@freenove.com

113 Chapter 10 Photoresistor & LED

█ www.freenove.com

support@freenove.com █

Component knowledge

Photoresistor

Photoresistor is a light sensitive resistor. When the strength that light casts onto the photoresistor surface is

not the same, resistance of photoresistor will change. With this feature, we can use photoresistor to detect

light intensity. Photoresistor and symbol are as follows.

The circuit below is often used to detect the change of photoresistor resistance:

In the above circuit, when photoresistor resistance changes due to light intensity, voltage between

photoresistor and resistor R1 will change, so light's intensity can be obtained by measuring the voltage.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 10 Photoresistor & LED 114 www.freenove.com █

█ support@freenove.com

Circuit

The circuit of this project is similar to the one in last chapter. The only difference is that the input signal of the

AIN0 pin of PCF8591 is changed from a potentiometer to combination of a photoresistor and a resistor.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

115 Chapter 10 Photoresistor & LED

█ www.freenove.com

support@freenove.com █

http://www.freenove.com/
mailto:support@freenove.com

Chapter 10 Photoresistor & LED 116 www.freenove.com █

█ support@freenove.com

Code

The code of this project is identical with the one in last chapter logically.

C Code 10.1.1 Nightlamp

First observe the project result, and then analyze the code.

1. Use cd command to enter 010.1.1_Nightlamp directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/10.1.1_Nightlamp

2. Use following command to compile “Nightlamp.c” and generate executable file “Nightlamp”.

gcc Nightlamp.c –o Nightlamp –lwiringPi -lpthread

3. Then run the generated file “Nightlamp”.

sudo ./Nightlamp

After the program is executed, when you cover the photosensitive resistance or make a flashlight toward the

photoresistor, the brightness of LED will be enhanced or weakened. And the terminal window will print out

the current input voltage value of PCF8591 AIN0 pin and the converted digital quantity.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#include <wiringPi.h>

#include <pcf8591.h>

#include <stdio.h>

#include <softPwm.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

#define ledPin 0

int main(void){

 int value;

 float voltage;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 softPwmCreate(ledPin,0,100);

 pcf8591Setup(pinbase,address);

 while(1){

 value = analogRead(A0); //read A0 pin

 softPwmWrite(ledPin,value*100/255);

 voltage = (float)value / 255.0 * 3.3; // calculate voltage

 printf("ADC value : %d ,\tVoltage : %.2fV\n",value,voltage);

http://www.freenove.com/
mailto:support@freenove.com

117 Chapter 10 Photoresistor & LED

█ www.freenove.com

support@freenove.com █

29

30

31

32

 delay(100);

 }

 return 0;

}

Python Code 10.1.1 Nightlamp

First observe the project result, and then analyze the code.

1. Use cd command to enter 09.1.1_Nightlamp directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/10.1.1_Nightlamp

2. Use the python command to execute the Python code “Nightlamp.py”.

python Nightlamp.py

After the program is executed, when you cover the photosensitive resistance or make a flashlight toward the

photoresistor, the brightness of LED will be enhanced or weakened. And the terminal window will print out

the current input voltage value of PCF8591 AIN0 pin and the converted digital quantity.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

import RPi.GPIO as GPIO

import smbus

import time

address = 0x48

bus=smbus.SMBus(1)

cmd=0x40

ledPin = 11

def analogRead(chn):

 value = bus.read_byte_data(address,cmd+chn)

 return value

def analogWrite(value):

 bus.write_byte_data(address,cmd,value)

def setup():

 global p

 GPIO.setmode(GPIO.BOARD)

 GPIO.setup(ledPin,GPIO.OUT)

 GPIO.output(ledPin,GPIO.LOW)

 p = GPIO.PWM(ledPin,1000)

 p.start(0)

def loop():

 while True:

 value = analogRead(0)

 p.ChangeDutyCycle(value*100/255)

 voltage = value / 255.0 * 3.3

http://www.freenove.com/
mailto:support@freenove.com

Chapter 10 Photoresistor & LED 118 www.freenove.com █

█ support@freenove.com

31

32

33

34

35

36

37

38

39

40

41

42

43

44

 print ('ADC Value : %d, Voltage : %.2f'%(value,voltage))

 time.sleep(0.01)

def destroy():

 bus.close()

 GPIO.cleanup()

if __name__ == '__main__':

 print ('Program is starting ... ')

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

http://www.freenove.com/
mailto:support@freenove.com

119 Chapter 11 Thermistor

█ www.freenove.com

support@freenove.com █

Chapter 11 Thermistor

In this chapter, we will learn another new kind of resistor, thermistor.

Project 11.1 Thermometer

The resistance of thermistor will be changed with temperature change. So we can make a thermometer

according to this feature.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

Thermistor x1

PCF8591 x1

Resistor 10kΩ x3

http://www.freenove.com/
mailto:support@freenove.com

Chapter 11 Thermistor 120 www.freenove.com █

█ support@freenove.com

Component knowledge

Thermistor

Thermistor is a temperature sensitive resistor. When the temperature changes, resistance of thermistor will

change. With this feature, we can use thermistor to detect temperature intensity. Thermistor and symbol are

as follows.

The relationship between resistance value and temperature of thermistor is:

Rt=R*EXP [B*(1/T2-1/T1)]

Where:

Rt is the thermistor resistance under T2 temperature;

R is in the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of E;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15+celsius temperature.

Parameters of the thermistor we use is: B=3950, R=10k, T1=25.

The circuit connection method of the thermistor is similar to photoresistor, like the following method:

We can use the value measured by the analog pin of UNO to obtain resistance value of thermistor, and then

can use the formula to obtain the temperature value.

Consequently, the temperature formula can be concluded:

T2 = 1/(1/T1 + ln(Rt/R)/B)

http://www.freenove.com/
mailto:support@freenove.com

121 Chapter 11 Thermistor

█ www.freenove.com

support@freenove.com █

Circuit

The circuit of this project is similar to the one in last chapter. The only difference is that the photoresistor is

replaced by the thermistor.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 11 Thermistor 122 www.freenove.com █

█ support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

123 Chapter 11 Thermistor

█ www.freenove.com

support@freenove.com █

Code

In this project code, the ADC value is still needed to be read, and the difference is that a specific formula is

used to calculate the temperature value.

C Code 11.1.1 Thermometer

First observe the project result, and then analyze the code.

Use cd command to enter 11.1.1_Thermometer directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/11.1.1_Thermometer

1. Use following command to compile “Thermometer.c” and generate executable file “Thermometer”. “-lm”

option is needed.

gcc Thermometer.c –o Thermometer –lwiringPi –lm

2. Then run the generated file “Thermometer”.

sudo ./Thermometer

After the program is executed, the terminal window will print out the current ADC value, voltage value and

temperature value. Try to pinch the thermistor (do not touch pin) with hand lasting for a while, then the

temperature value will be increased.

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

#include <wiringPi.h>

#include <pcf8591.h>

#include <stdio.h>

#include <math.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

int main(void){

http://www.freenove.com/
mailto:support@freenove.com

Chapter 11 Thermistor 124 www.freenove.com █

█ support@freenove.com

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 int adcValue;

 float tempK,tempC;

 float voltage,Rt;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 pcf8591Setup(pinbase,address);

 while(1){

 adcValue = analogRead(A0); //read A0 pin

 voltage = (float)adcValue / 255.0 * 3.3; // calculate voltage

 Rt = 10 * voltage / (3.3 - voltage); //calculate resistance value of thermistor

 tempK = 1/(1/(273.15 + 25) + log(Rt/10)/3950.0); //calculate temperature (Kelvin)

 tempC = tempK -273.15; //calculate temperature (Celsius)

 printf("ADC value : %d ,\tVoltage : %.2fV,

\tTemperature : %.2fC\n",adcValue,voltage,tempC);

 delay(100);

 }

 return 0;

}

In the code, read the ADC value of PCF8591 A0 port, and then calculate the voltage and the resistance of

thermistor according to Ohms law. Finally, calculate the current temperature. according to the front formula.

Python Code 11.1.1 Thermometer

First observe the project result, and then analyze the code.

1. Use cd command to enter 11.1.1_Thermometer directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/11.1.1_Thermometer

2. Use python command to execute python code “Thermometer.py”.

python Thermometer.py

After the program is executed, the terminal window will print out the current ADC value, voltage value and

temperature value. Try to pinch the thermistor (do not touch pin) with hand lasting for a while, then the

temperature value will be increased.

The following is the code:

http://www.freenove.com/
mailto:support@freenove.com

125 Chapter 11 Thermistor

█ www.freenove.com

support@freenove.com █

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

import RPi.GPIO as GPIO

import smbus

import time

import math

address = 0x48

bus=smbus.SMBus(1)

cmd=0x40

def analogRead(chn):

 value = bus.read_byte_data(address,cmd+chn)

 return value

def analogWrite(value):

 bus.write_byte_data(address,cmd,value)

def setup():

 GPIO.setmode(GPIO.BOARD)

def loop():

 while True:

 value = analogRead(0) #read A0 pin

 voltage = value / 255.0 * 3.3 #calculate voltage

 Rt = 10 * voltage / (3.3 - voltage) #calculate resistance value of thermistor

 tempK = 1/(1/(273.15 + 25) + math.log(Rt/10)/3950.0) #calculate temperature

(Kelvin)

 tempC = tempK -273.15 #calculate temperature (Celsius)

 print('ADC Value : %d, Voltage : %.2f, Temperature : %.2f'%(value,voltage,tempC))

 time.sleep(0.01)

def destroy():

 GPIO.cleanup()

if __name__ == '__main__':

 print ('Program is starting ... ')

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

In the code, read the ADC value of PCF8591 A0 port, and then calculate the voltage and the resistance of

thermistor according to Ohms law. Finally, calculate the current temperature. according to the front formula.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 12 Joystick 126 www.freenove.com █

█ support@freenove.com

Chapter 12 Joystick

In the previous chapter, we have learned how to use rotary potentiometer. Now, let's learn a new electronic

module Joystick which working on the same principle as rotary potentiometer.

Project 12.1 Joystick

In this project, we will read the output data of Joystick and print it to the screen.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

Jumper

PCF8591 x1

Resistor 10kΩ x2

Joystick x1

http://www.freenove.com/
mailto:support@freenove.com

127 Chapter 12 Joystick

█ www.freenove.com

support@freenove.com █

Component knowledge

Joystick

Joystick is a kind of sensor used with your fingers, which is widely used in gamepad and remote controller. It

can shift in direction Y or direction X at the same time. And it can also be pressed in direction Z.

Two rotary potentiometers inside the joystick are set to detect the shift direction of finger, and a push

button in vertical direction is set to detect the action of pressing.

When read the data of joystick, there are some different between axis: data of X and Y axis is analog, which

need to use ADC. Data of Z axis is digital, so you can directly use the GPIO to read, or you can also use ADC

to read.

X

Y

http://www.freenove.com/
mailto:support@freenove.com

Chapter 12 Joystick 128 www.freenove.com █

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

129 Chapter 12 Joystick

█ www.freenove.com

support@freenove.com █

Code

In this project code, we will read ADC value of X and Y axis of Joystick, and read digital quality of Z axis, then

print these data out.

C Code 12.1.1 Joystick

First observe the project result, and then analyze the code.

1. Use cd command to enter 12.1.1_Joystick directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/12.1.1_ Joystick

2. Use following command to compile "Joystick.c" and generate executable file "Joystick.c". "-lm" option is

needed.

gcc Joystick.c –o Joystick –lwiringPi –lm

3. Then run the generated file "Joystick".

sudo ./Joystick

After Program is executed, the terminal window will print out the data of 3 axes X, Y, Z. And shifting the

Joystick or pressing it will make those data change.

The flowing is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

#include <wiringPi.h>

#include <pcf8591.h>

#include <stdio.h>

#include <softPwm.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

#define Z_Pin 1 //define pin for axis Z

int main(void){

 int val_X,val_Y,val_Z;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

http://www.freenove.com/
mailto:support@freenove.com

Chapter 12 Joystick 130 www.freenove.com █

█ support@freenove.com

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 printf("setup wiringPi failed !");

 return 1;

 }

 pinMode(Z_Pin,INPUT); //set Z_Pin as input pin and pull-up mode

 pullUpDnControl(Z_Pin,PUD_UP);

 pcf8591Setup(pinbase,address); //initialize PCF8591

 while(1){

 val_Z = digitalRead(Z_Pin); //read digital quality of axis Z

 val_Y = analogRead(A0); //read analog quality of axis X and Y

 val_X = analogRead(A1);

 printf("val_X: %d ,\tval_Y: %d ,\tval_Z: %d \n",val_X,val_Y,val_Z);

 delay(100);

 }

 return 0;

}

In the code, configure Z_Pin to pull-up input mode. In while cycle of main function, use analogRead () to

read the value of axis X and Y and use digitalRead () to read the value of axis Z, then print them out.

 while(1){

 val_Z = digitalRead(Z_Pin); //read digital quality of axis Z

 val_Y = analogRead(A0); //read analog quality of axis X and Y

 val_X = analogRead(A1);

 printf("val_X: %d ,\tval_Y: %d ,\tval_Z: %d \n",val_X,val_Y,val_Z);

 delay(100);

 }

http://www.freenove.com/
mailto:support@freenove.com

131 Chapter 12 Joystick

█ www.freenove.com

support@freenove.com █

Python Code 12.1.1 Joystick

First observe the project result, and then analyze the code.

1. Use cd command to enter 12.1.1_Joystick directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/12.1.1_ Joystick

2. Use python command to execute python code "Joystick.py".

python Joystick.py

After Program is executed, the terminal window will print out the data of 3 axes X, Y, Z. And shifting the

Joystick or pressing it will make those data change.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

import RPi.GPIO as GPIO

import smbus

import time

address = 0x48

bus=smbus.SMBus(1)

cmd=0x40

Z_Pin = 12 #define pin for Z_Pin

def analogRead(chn): #read ADC value

 bus.write_byte(address,cmd+chn)

 value = bus.read_byte(address)

 value = bus.read_byte(address)

 #value = bus.read_byte_data(address,cmd+chn)

 return value

def analogWrite(value):

 bus.write_byte_data(address,cmd,value)

def setup():

 global p_Red,p_Green,p_Blue

 GPIO.setmode(GPIO.BOARD)

 GPIO.setup(Z_Pin,GPIO.IN,GPIO.PUD_UP) #set Z_Pin to pull-up mode

def loop():

 while True:

 val_Z = GPIO.input(Z_Pin) #read digital quality of axis Z

 val_Y = analogRead(0) #read analog quality of axis X and Y

 val_X = analogRead(1)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 12 Joystick 132 www.freenove.com █

█ support@freenove.com

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 print ('value_X: %d ,\tvlue_Y: %d ,\tvalue_Z: %d'%(val_X,val_Y,val_Z))

 time.sleep(0.01)

def destroy():

 bus.close()

 GPIO.cleanup()

if __name__ == '__main__':

 print ('Program is starting ... ')

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

In the code, configure Z_Pin to pull-up input mode. In while cycle of loop, use analogRead () to read the

value of axis X and Y and use GPIO.input () to read the value of axis Z, then print them out.

 while True:

 val_Z = GPIO.input(Z_Pin) #read digital quality of axis Z

 val_Y = analogRead(1) #read analog quality of axis X and Y

 val_X = analogRead(2)

 print ('value_X: %d ,\tvlue_Y: %d ,\tvalue_Z: %d'%(val_X,val_Y,val_Z))

 time.sleep(0.01)

http://www.freenove.com/
mailto:support@freenove.com

133 Chapter 13 Motor & Driver

█ www.freenove.com

support@freenove.com █

Chapter 13 Motor & Driver

In this chapter, we will learn some knowledge about DC motor and DC motor drive, and how to control the

speed and direction of motor.

Project 13.1 Control Motor with Potentiometer

In this project, a potentiometer is used to control motor. When the potentiometer is in the midpoint position,

the motor will stops rotating, and when away from the middle position, the motor speed increases. When

potentiometer is shifted to limited ends, the motor speed reaches maximum. When the potentiometer

position is at different side of middle position, the direction of motor is different.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

Breadboard power module x1

9V Battery (provided by yourself) & battery cable

Rotary potentiometer x1

Motor x1

Resistor 10kΩ x2

PCF8591 x1

L293D

http://www.freenove.com/
mailto:support@freenove.com

Chapter 13 Motor & Driver 134 www.freenove.com █

█ support@freenove.com

Component knowledge

Motor

Motor is a device that converts electrical energy into mechanical energy. Motor consists of two parts: stator

and rotor. When motor works, the stationary part is stator, and the rotating part is rotor. Stator is usually the

outer case of motor, and it has terminals to connect to the power. Rotor is usually the shaft of motor, and can

drive other mechanical devices to run. Diagram below is a small DC motor with two pins.

When motor get connected to the power supply, it will rotate in one direction. Reverse the polarity of power

supply, then motor rotates in opposite direction.

+ - - +

L293D

L293D is a chip integrated with 4-channel motor drive. You can drive a unidirectional motor with 4 ports or a

bi-directional motor with 2 port or a stepper motor.

http://www.freenove.com/
mailto:support@freenove.com

135 Chapter 13 Motor & Driver

█ www.freenove.com

support@freenove.com █

Port description of L293D module is as follows:

Pin name Pin number Description

In x 2, 7, 10, 15 Channel x digital signal input pin

Out x 3, 6, 11, 14 Channel x output pin, input high or low level according to In x pin, get

connected to +Vmotor or 0V

Enable1 1 Channel 1 and channel 2 enable pin, high level enable

Enable2 9 Channel 3 and channel 4 enable pin, high level enable

0V 4, 5, 12, 13 Power cathode (GND)

+V 16 Positive electrode (VCC) of power supply, supply voltage 4.5~36V

+Vmotor 8 Positive electrode of load power supply, provide power supply for the Out

pin x, the supply voltage is +V~36V

For more details, please see datasheet.

When using L293D to drive DC motor, there are usually two kinds of connection.

Following connection uses one channel, and it can control motor speed through PWM, but the motor can

only rotate in one direction.

Following connection uses two channels: one channel outputs PWM wave, and another channel connects

GND, so you can control the speed of motor. When these two channel signals are exchanged, the current

direction of the motor can be reversed, and the motor will rotate in reverse direction. This can not only

control the speed of motor, but also can control the steering of motor.

In actual use, motor is usually connected to the channel 1 and 2, output different level to in1 and in2 to

control the rotation direction of the motor, and output PWM wave to Enable1 port to control the motor

rotation speed. Or, get motor connected to the channel 3 and 4, output different level to in3 and in4 to

control the motor's rotation direction, and output PWM wave to Enable2 pin to control the motor rotation

speed.

GND

GND

http://www.freenove.com/
mailto:support@freenove.com

Chapter 13 Motor & Driver 136 www.freenove.com █

█ support@freenove.com

Circuit

When connecting the circuit, pay attention to that because the motor is a high-power component, do not

use the power provided by the RPi, which may do damage to your RPi. the logic circuit can be powered by

RPi power or external power supply which should have the common ground with RPi.

Schematic diagram

http://www.freenove.com/
mailto:support@freenove.com

137 Chapter 13 Motor & Driver

█ www.freenove.com

support@freenove.com █

Hardware connection

Change the jumper cap

position to change supply

voltage for motor. Logic voltage supply

end (must select

3.3V)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 13 Motor & Driver 138 www.freenove.com █

█ support@freenove.com

Code

In this project code, first read the ADC value, and then control the rotation direction and speed of the motor

according to the value of the ADC.

C Code 13.1.1 Motor

First observe the project result, and then analyze the code.

1. Use cd command to enter 13.1.1_Motor directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/13.1.1_Motor

2. Use following command to compile “Motor.c” and generate executable file “Motor”. “-lm” and “-lpthread”

option is needed.

gcc Motor.c –o Motor–lwiringPi –lm -lpthread

3. Then tun the generated file ”Motor”.

sudo ./Motor

After the program is executed, shift the potentiometer, then the rotation speed and direction of the motor

will change with it. And when the potentiometer is turned to midpoint position, the motor stops running.

When away from the middle position, the motor speed will increase. When to both ends, motor speed reach

to maximum. When the potentiometer is turned to different side of the middle position, the motor will run

with different direction. Meanwhile, the terminal will print out ADC value of the potentiometer, the motor

direction and the PWM duty cycle used to control motor speed.

The following is the code:

1

2

3

4

5

6

7

8

9

#include <wiringPi.h>

#include <pcf8591.h>

#include <stdio.h>

#include <softPwm.h>

#include <math.h>

#include <stdlib.h>

#define address 0x48 //pcf8591 default address

#define pinbase 64 //any number above 64

http://www.freenove.com/
mailto:support@freenove.com

139 Chapter 13 Motor & Driver

█ www.freenove.com

support@freenove.com █

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

#define A0 pinbase + 0

#define A1 pinbase + 1

#define A2 pinbase + 2

#define A3 pinbase + 3

#define motoRPin1 2 // define the pin connected to L293D

#define motoRPin2 0

#define enablePin 3

// Map function: map the value from a range of mapping to another range.

long map(long value,long fromLow,long fromHigh,long toLow,long toHigh){

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow;

}

//motor function: determine the direction and speed of the motor according to the ADC

value to be input.

void motor(int ADC){

 int value = ADC -128;

 if(value>0){

 digitalWrite(motoRPin1,HIGH);

 digitalWrite(motoRPin2,LOW);

 printf("turn Forward...\n");

 }

 else if (value<0){

 digitalWrite(motoRPin1,LOW);

 digitalWrite(motoRPin2,HIGH);

 printf("turn Back...\n");

 }

 else {

 digitalWrite(motoRPin1,LOW);

 digitalWrite(motoRPin2,LOW);

 printf("Motor Stop...\n");

 }

 softPwmWrite(enablePin,map(abs(value),0,128,0,255));

 printf("The PWM duty cycle is %d%%\n",abs(value)*100/127);//print the PWM duty cycle.

}

int main(void){

 int value;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 pinMode(enablePin,OUTPUT);// set mode for the pin

 pinMode(motoRPin1,OUTPUT);

 pinMode(motoRPin2,OUTPUT);

 softPwmCreate(enablePin,0,100);// define PWM pin

http://www.freenove.com/
mailto:support@freenove.com

Chapter 13 Motor & Driver 140 www.freenove.com █

█ support@freenove.com

54

55

56

57

58

59

60

61

62

63

 pcf8591Setup(pinbase,address);//initialize PCF8591

 while(1){

 value = analogRead(A0); //read A0 pin

 printf("ADC value : %d \n",value);

 motor(value); // start the motor

 delay(100);

 }

 return 0;

}

We have been familiar with reading ADC value. So, let’s learn directly subfunction void motor(int ADC): first,

compare ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,

motoRPin1 outputs high level and motoRPin2 outputs low level to control motor to run with forward rotation

direction. When the current ADC value is lower, motoRPin1 outputs low level and motoRPin2 outputs high

level to control motor run with reversed direction. When the ADC value is equal to 128, motoRPin1 and

motoRPin2 output low level, then the motor stops. And then determine PWM duty cycle according to the

difference between ADC value and 128. Because the absolute difference value stays within 0-128. We need

to use the map() subfunction mapping the difference value to range of 0-255. Finally print out the duty cycle.

 void motor(int ADC){

 int value = ADC -128;

 if(value>0){

 digitalWrite(motoRPin1,HIGH);

 digitalWrite(motoRPin2,LOW);

 printf("turn Forward...\n");

 }

 else if (value<0){

 digitalWrite(motoRPin1,LOW);

 digitalWrite(motoRPin2,HIGH);

 printf("turn Backward...\n");

 }

 else {

 digitalWrite(motoRPin1,LOW);

 digitalWrite(motoRPin2,LOW);

 printf("Motor Stop...\n");

 }

 softPwmWrite(enablePin,map(abs(value),0,128,0,255));

 printf("The PWM duty cycle is %d%%\n",abs(value)*100/127);// print out PWM duty

cycle.

}

http://www.freenove.com/
mailto:support@freenove.com

141 Chapter 13 Motor & Driver

█ www.freenove.com

support@freenove.com █

Python Code 13.1.1 Motor

First observe the project result, and then analyze the code.

1. Use cd command to enter 13.1.1_Motor directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/13.1.1_Motor

2. Use python command to execute python code “Motor.py”.

python Motor.py

After the program is executed, shift the potentiometer, then the rotation speed and direction of the motor

will change with it. And when the potentiometer is turned to midpoint position, the motor stops running.

When away from the middle position, the motor speed will increase. When to both ends, motor speed reach

to maximum. When the potentiometer is turned to different side of the middle position, the motor will run

with different direction. Meanwhile, the terminal will print out ADC value of the potentiometer, the motor

direction and the PWM duty cycle used to control motor speed.

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

import RPi.GPIO as GPIO

import smbus

import time

address = 0x48

bus=smbus.SMBus(1)

cmd=0x40

define the pin connected to L293D

motoRPin1 = 13

motoRPin2 = 11

enablePin = 15

def analogRead(chn):

 value = bus.read_byte_data(address,cmd+chn)

 return value

def analogWrite(value):

 bus.write_byte_data(address,cmd,value)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 13 Motor & Driver 142 www.freenove.com █

█ support@freenove.com

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

def setup():

 global p

 GPIO.setmode(GPIO.BOARD) # set mode for pin

 GPIO.setup(motoRPin1,GPIO.OUT)

 GPIO.setup(motoRPin2,GPIO.OUT)

 GPIO.setup(enablePin,GPIO.OUT)

 p = GPIO.PWM(enablePin,1000)# creat PWM

 p.start(0)

#mapNUM function: map the value from a range of mapping to another range.

def mapNUM(value,fromLow,fromHigh,toLow,toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

#motor function: determine the direction and speed of the motor according to the ADC

value to be input.

def motor(ADC):

 value = ADC -128

 if (value > 0):

 GPIO.output(motoRPin1,GPIO.HIGH)

 GPIO.output(motoRPin2,GPIO.LOW)

 print ('Turn Forward...')

 elif (value < 0):

 GPIO.output(motoRPin1,GPIO.LOW)

 GPIO.output(motoRPin2,GPIO.HIGH)

 print ('Turn Backward...')

 else :

 GPIO.output(motoRPin1,GPIO.LOW)

 GPIO.output(motoRPin2,GPIO.LOW)

 print ('Motor Stop...')

 p.start(mapNUM(abs(value),0,128,0,100))

 print ('The PWM duty cycle is %d%%\n'%(abs(value)*100/127)) #print PMW duty cycle.

def loop():

 while True:

 value = analogRead(0)

 print ('ADC Value : %d'%(value))

 motor(value)

 time.sleep(0.01)

def destroy():

 bus.close()

 GPIO.cleanup()

if __name__ == '__main__':

http://www.freenove.com/
mailto:support@freenove.com

143 Chapter 13 Motor & Driver

█ www.freenove.com

support@freenove.com █

64

65

66

67

68

69

 print ('Program is starting ... ')

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

We have been familiar with reading ADC value. So, let’s learn directly subfunction def motor(ADC): first,

compare ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,

motoRPin1 outputs high level and motoRPin2 output low level to control motor to run with forward rotation

direction. When the current ADC value is lower, motoRPin1 outputs low level and motoRPin2 outputs high

level to control run with reversed direction. When the ADC value is equal to 128, make motoRPin1 and

motoRPin2 output low level, then the motor stops. And then determine PWM duty cycle according to the

difference between ADC value and 128. Because the absolute difference value stays within 0-128. We need

to use the map () subfunction mapping the difference value to range of 0-255. Finally print out the duty cycle.

 def motor(ADC):

 value = ADC -128

 if (value > 0):

 GPIO.output(motoRPin1,GPIO.HIGH)

 GPIO.output(motoRPin2,GPIO.LOW)

 print ('Turn Forward...')

 elif (value < 0):

 GPIO.output(motoRPin1,GPIO.LOW)

 GPIO.output(motoRPin2,GPIO.HIGH)

 print ('Turn Backward...')

 else :

 GPIO.output(motoRPin1,GPIO.LOW)

 GPIO.output(motoRPin2,GPIO.LOW)

 print ('Motor Stop...')

 p.start(mapNUM(abs(value),0,128,0,100))

 print ('The PWM duty cycle is %d%%\n'%(abs(value)*100/127)) #print PMW duty cycle.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 14 Relay & Motor 144 www.freenove.com █

█ support@freenove.com

Chapter 14 Relay & Motor

In this chapter, we will learn a kind of special switch module, Relay Module.

Project 14.1.1 Relay & Motor

In this project, we will use a push button to control a relay and drive the motor.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

Jumper

9V battery (prepared by yourself) & battery line

Breadboard extension x1

Resistor 10kΩ x2

Resistor 1kΩ x1

Resistor 220Ω x1

NPN

transistor x1

Relay x1

Motor x1

Push button x1

LED x1

Diode x1

http://www.freenove.com/
mailto:support@freenove.com

145 Chapter 14 Relay & Motor

█ www.freenove.com

support@freenove.com █

Component knowledge

Relay

Relay is a safe switch which can use low power circuit to control high power circuit. It consists of electromagnet

and contacts. The electromagnet is controlled by low power circuit and contacts is used in high power circuit.

When the electromagnet is energized, it will attract contacts.

The following is a principle diagram of common relay and the feature and circuit symbol of 5V relay used in

this project:

Diagram

Feature：

Symbol

Pin 5 and pin 6 are connected to each other inside. When the coil pin3 and 4 get connected to 5V power

supply, pin 1 will be disconnected to pin 5&6 and pin 2 will be connected to pin 5&6. So pin 1 is called close

end, pin 2 is called open end.

Inductor

The unit of inductance(L) is the henry (H). 1H=1000mH, 1mH=1000μH.

Inductor is an energy storage device that converts electrical energy into magnetic energy. Generally, it consists

of winding coil, with a certain amount of inductance. Inductor will hinder the changing current passing through

the inductor. When the current passing through inductor increases, it will attempt to hinder the increasing

trend of current; and when the current passing through the inductor decreases, it will attempt to hinder the

decreasing trend of current. So the current passing through inductor is not transient.

The reference circuit for relay is as follows. The coil of relay can be equivalent to inductor, when the transistor

disconnects power supply of the relay, the current in the coil of the relay can't stop immediately, causing an

impact on power supply. So a parallel diode will get connected to both ends of relay coil pin in reversing

direction, then the current will pass through diode, avoiding the impact on power supply.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 14 Relay & Motor 146 www.freenove.com █

█ support@freenove.com

Circuit

Pay attention to the power supply voltage needed for the components in circuit, in which the relay needs

power supply voltage 5V, and the motor needs 3.3V. Additionally, a LED is used as an indicator for the relay

(turned on or turned off).

Schematic diagram

http://www.freenove.com/
mailto:support@freenove.com

147 Chapter 14 Relay & Motor

█ www.freenove.com

support@freenove.com █

Hardware connection

OFF
3.3V

http://www.freenove.com/
mailto:support@freenove.com

Chapter 14 Relay & Motor 148 www.freenove.com █

█ support@freenove.com

Code

The project code is in the same logic as TableLamp. Press the button to driver the transistor conducted.

Because the relay and LED are connected in parallel, they will be opened at the same time. And if you press

the button again, they will be closed.

C Code 14.1.1 Relay

First observe the project result, and then analyze the code.

1. Use cd command to enter 14.1.1_Relay directory of C code.

cd ~/Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi/Code/C_Code/14.1.1_Relay

2. Use following command to compile "Relay.c" and generate executable file "Relay".

gcc Relay.c –o Relay –lwiringPi

3. Run the generated file "Relay".

sudo ./Relay

After the program is executed, press the button, then the relay is opened, the Motor starts to rotate and LED

is turned on. If you press the button again, the relay is closed, the Motor stops running, and the LED is turned

off.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

#include <wiringPi.h>

#include <stdio.h>

#define relayPin 0 //define the relayPin

#define buttonPin 1 //define the buttonPin

int relayState=LOW; //store the State of relay

int buttonState=HIGH; //store the State of button

int lastbuttonState=HIGH;//store the lastState of button

long lastChangeTime; //store the change time of button state

long captureTime=50; //set the button state stable time

int reading;

int main(void)

{

 if(wiringPiSetup() == -1){ //when initialize wiring fairelay,print message to screen

 printf("setup wiringPi fairelay !");

 return 1;

 }

 printf("Program is starting...\n");

 pinMode(relayPin, OUTPUT);

 pinMode(buttonPin, INPUT);

 pullUpDnControl(buttonPin, PUD_UP); //pull up to high level

 while(1){

 reading = digitalRead(buttonPin); //read the current state of button

 if(reading != lastbuttonState){ //if the button state has changed ,record the

time point

 lastChangeTime = millis();

http://www.freenove.com/
mailto:support@freenove.com

149 Chapter 14 Relay & Motor

█ www.freenove.com

support@freenove.com █

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

 }

 //if changing-state of the button last beyond the time we set,we considered that

 //the current button state is an effective change rather than a buffeting

 if(millis() - lastChangeTime > captureTime){

 //if button state is changed ,update the data.

 if(reading != buttonState){

 buttonState = reading;

 //if the state is low ,the action is pressing

 if(buttonState == LOW){

 printf("Button is pressed!\n");

 relayState = !relayState;

 if(relayState){

 printf("turn on relay ...\n");

 }

 else {

 printf("turn off relay ...\n");

 }

 }

 //if the state is high ,the action is releasing

 else {

 printf("Button is released!\n");

 }

 }

 }

 digitalWrite(relayPin,relayState);

 lastbuttonState = reading;

 }

 return 0;

}

The code is in the same logic as TableLamp code above.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 14 Relay & Motor 150 www.freenove.com █

█ support@freenove.com

Python Code 14.1.1 Relay

First observe the project result, and then analyze the code.

1. Use cd command to enter 14.1.1_Relay directory of Python code.

cd ~/Freenove_Ultimate_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/14.1.1_Relay

2. Use python command to execute code "Relay.py".

python Relay.py

After the program is executed, press the button, then the relay is opened, the Motor starts to rotate and LED

is turned on. If you press the button again, the relay is closed, the Motor stops running, and the LED is turned

off.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

import RPi.GPIO as GPIO

import time

relayPin = 11 # define the relayPin

buttonPin = 12 # define the buttonPin

debounceTime = 50

def setup():

 print ('Program is starting...')

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(relayPin, GPIO.OUT) # Set relayPin's mode is output

 GPIO.setup(buttonPin, GPIO.IN)

def loop():

 relayState = False

 lastChangeTime = round(time.time()*1000)

 buttonState = GPIO.HIGH

 lastButtonState = GPIO.HIGH

 reading = GPIO.HIGH

 while True:

 reading = GPIO.input(buttonPin)

 if reading != lastButtonState :

 lastChangeTime = round(time.time()*1000)

 if ((round(time.time()*1000) - lastChangeTime) > debounceTime):

 if reading != buttonState :

 buttonState = reading;

 if buttonState == GPIO.LOW:

 print("Button is pressed!")

 relayState = not relayState

 if relayState:

 print("Turn on relay ...")

 else :

 print("Turn off relay ... ")

 else :

http://www.freenove.com/
mailto:support@freenove.com

151 Chapter 14 Relay & Motor

█ www.freenove.com

support@freenove.com █

35

36

37

38

39

40

41

42

43

44

45

46

47

48

 print("Button is released!")

 GPIO.output(relayPin,relayState)

 lastButtonState = reading

def destroy():

 GPIO.output(relayPin, GPIO.LOW) # relay off

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

The code is in the same logic as TableLamp code above.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo 152 www.freenove.com █

█ support@freenove.com

Chapter 15 Servo

We have learned how to control the speed and steering of the motor before. In this chapter, we will learn a

kind of motor that can rotate to a specific angle, servo.

Project 15.1 Servo Sweep

First, let's learn how to make the servo rotate.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

Jumper

Servo x1

http://www.freenove.com/
mailto:support@freenove.com

153 Chapter 15 Servo

█ www.freenove.com

support@freenove.com █

Component knowledge

Servo

Servo is an auto-control system, consisting of DC motor, reduction gear, sensor and control circuit. Usually,

it can rotate in the range of 180 degrees. Servo can output larger torque and is widely used in model airplane,

robot and so on. It has three lines, including two for electric power line positive (2-VCC, red), negative (3-

GND, brown), and the signal line (1-Signal, orange).

We use 50Hz PWM signal with a duty cycle in a certain range to drive the servo. The lasting time 0.5ms-2.5ms

of PWM single cycle high level corresponds to the servo angle 0 degrees - 180 degree linearly. Part of the

corresponding values are as follows:

High level time Servo angle

0.5ms 0 degree

1ms 45 degree

1.5ms 90 degree

2ms 135 degree

2.5ms 180 degree

When you change the servo signal, servo will rotate to the designated position.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo 154 www.freenove.com █

█ support@freenove.com

Circuit

Pay attention to the power supply for stepping motor is 5v, and don't confuse the line sequence.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

155 Chapter 15 Servo

█ www.freenove.com

support@freenove.com █

Code

In this project, we make the servo rotate from 0 degrees to 180 degrees, and then from 180 degrees to 0

degrees.

C Code 15.1.1 Sweep

First observe the project result, and then analyze the code.

1. Use cd command to enter 15.1.1_Sweep directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/15.1.1_Sweep

2. Use following command to compile "Sweep.c" and generate executable file "Sweep".

gcc Sweep.c –o Sweep –lwiringPi

3. Run the generated file "Sweep".

sudo ./Sweep

After the program is executed, the servo will rotate from 0 degrees to 180 degrees, and then from 180 degrees

to 0 degrees, circularly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#include <wiringPi.h>

#include <softPwm.h>

#include <stdio.h>

#define OFFSET_MS 3 //Define the unit of servo pulse offset: 0.1ms

#define SERVO_MIN_MS 5+OFFSET_MS //define the pulse duration for minimum angle of

servo

#define SERVO_MAX_MS 25+OFFSET_MS //define the pulse duration for maximum angle of

servo

#define servoPin 1 //define the GPIO number connected to servo

long map(long value,long fromLow,long fromHigh,long toLow,long toHigh){

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow;

}

void servoInit(int pin){ //initialization function for servo PWM pin

 softPwmCreate(pin, 0, 200);

}

void servoWrite(int pin, int angle){ //Specif a certain rotation angle (0-180) for the

servo

 if(angle > 180)

 angle = 180;

 if(angle < 0)

 angle = 0;

 softPwmWrite(pin,map(angle,0,180,SERVO_MIN_MS,SERVO_MAX_MS));

}

void servoWriteMS(int pin, int ms){ //specific the unit for pulse(5-25ms) with

specific duration output by servo pin: 0.1ms

 if(ms > SERVO_MAX_MS)

 ms = SERVO_MAX_MS;

http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo 156 www.freenove.com █

█ support@freenove.com

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

 if(ms < SERVO_MIN_MS)

 ms = SERVO_MIN_MS;

 softPwmWrite(pin,ms);

}

int main(void)

{

 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring faiservo,print message to screen

 printf("setup wiringPi faiservo !");

 return 1;

 }

 printf("Program is starting ...\n");

 servoInit(servoPin); //initialize PWM pin of servo

 while(1){

 for(i=SERVO_MIN_MS;i<SERVO_MAX_MS;i++){ //make servo rotate from minimum angle

to maximum angle

 servoWriteMS(servoPin,i);

 delay(10);

 }

 delay(500);

 for(i=SERVO_MAX_MS;i>SERVO_MIN_MS;i--){ //make servo rotate from maximum angle

to minimum angle

 servoWriteMS(servoPin,i);

 delay(10);

 }

 delay(500);

 }

 return 0;

}

50 Hz pulse, namely cycle for 20ms, is required to control Servo. In function softPwmCreate (int pin, int

initialValue, int pwmRange), the unit of third parameter pwmRange is 100US, namely 0.1ms. In order to get

the PWM with cycle of 20ms, the pwmRange shoulde be set to 200. So in subfunction of servoInit (), we create

a PWM pin with pwmRange 200.

 void servoInit(int pin){ //initialization function for servo PWM pin

 softPwmCreate(pin, 0, 200);

}

As 0-180 degrees of servo corresponds to PWM pulse width 0.5-2.5ms, with PwmRange 200 and unit 0.1ms.

So, in function softPwmWrite (int pin, int value), the scope 5-25 of parameter value corresponds to 0-180

degrees of servo. What’s more, the number writen in subfunction servoWriteMS () should be within the range

of 5-25. However, in practice, due to the manufacture error of each servo, pulse width will also have deviation.

So we define a minimum pulse width and a maximum one and an error offset.

http://www.freenove.com/
mailto:support@freenove.com

157 Chapter 15 Servo

█ www.freenove.com

support@freenove.com █

 #define OFFSET_MS 3 //Define the unit of servo pulse offset: 0.1ms

#define SERVO_MIN_MS 5+OFFSET_MS //define the pulse duration for minimum angle of

servo

#define SERVO_MAX_MS 25+OFFSET_MS //define the pulse duration for maximum angle of

servo

……

void servoWriteMS(int pin, int ms){

 if(ms > SERVO_MAX_MS)

 ms = SERVO_MAX_MS;

 if(ms < SERVO_MIN_MS)

 ms = SERVO_MIN_MS;

 softPwmWrite(pin,ms);

}

In subfunction servoWrite (), input directly angle (0-180 degrees), and map the angle to the pulse width and

then output it.

 void servoWrite(int pin, int angle){ //Specif a certain rotation angle (0-180) for the

servo

 if(angle > 180)

 angle = 180;

 if(angle < 0)

 angle = 0;

 softPwmWrite(pin,map(angle,0,180,SERVO_MIN_MS,SERVO_MAX_MS));

}

Finally, in the "while" cycle of main function, use two "for" cycle to make servo rotate from 0 degrees to 180

degrees, and then from 180 degrees to 0 degrees.

 while(1){

 for(i=SERVO_MIN_MS;i<SERVO_MAX_MS;i++){ //make servo rotate from minimum angle

to maximum angle

 servoWriteMS(servoPin,i);

 delay(10);

 }

 delay(500);

 for(i=SERVO_MAX_MS;i>SERVO_MIN_MS;i--){ //make servo rotate from maximum angle

to minimum angle

 servoWriteMS(servoPin,i);

 delay(10);

 }

 delay(500);

 }

http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo 158 www.freenove.com █

█ support@freenove.com

Python Code 15.1.1 Sweep

First observe the project result, and then analyze the code.

1. Use cd command to enter 15.1.1_Sweep directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/15.1.1_Sweep

2. Use python command to execute code "Sweep.py".

python Sweep.py

After the program is executed, the servo will rotate from 0 degrees to 180 degrees, and then from 180 degrees

to 0 degrees, circularly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

import RPi.GPIO as GPIO

import time

OFFSE_DUTY = 0.5 #define pulse offset of servo

SERVO_MIN_DUTY = 2.5+OFFSE_DUTY #define pulse duty cycle for minimum angle of servo

SERVO_MAX_DUTY = 12.5+OFFSE_DUTY #define pulse duty cycle for maximum angle of servo

servoPin = 12

def map(value, fromLow, fromHigh, toLow, toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

def setup():

 global p

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 GPIO.setup(servoPin, GPIO.OUT) # Set servoPin's mode is output

 GPIO.output(servoPin, GPIO.LOW) # Set servoPin to low

 p = GPIO.PWM(servoPin, 50) # set Frequece to 50Hz

 p.start(0) # Duty Cycle = 0

def servoWrite(angle): # make the servo rotate to specific angle (0-180 degrees)

 if(angle<0):

 angle = 0

 elif(angle > 180):

 angle = 180

 p.ChangeDutyCycle(map(angle,0,180,SERVO_MIN_DUTY,SERVO_MAX_DUTY))#map the angle to

duty cycle and output it

def loop():

 while True:

 for dc in range(0, 181, 1): #make servo rotate from 0 to 180 deg

 servoWrite(dc) # Write to servo

 time.sleep(0.001)

 time.sleep(0.5)

 for dc in range(180, -1, -1): #make servo rotate from 180 to 0 deg

http://www.freenove.com/
mailto:support@freenove.com

159 Chapter 15 Servo

█ www.freenove.com

support@freenove.com █

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

 servoWrite(dc)

 time.sleep(0.001)

 time.sleep(0.5)

def destroy():

 p.stop()

 GPIO.cleanup()

if __name__ == '__main__': #Program start from here

 print ('Program is starting...')

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

50 Hz pulse, namely cycle for 20ms, is required to control Servo. So we need set PWM frequency of servoPin

to 50Hz.

 p = GPIO.PWM(servoPin, 50) # Set Frequency to 50Hz

As 0-180 degrees of servo corresponds to PWM pulse width 0.5-2.5ms within cycle 20ms and to duty cycle

2.5%-12.5%. In subfunction servoWrite (angle), map the angle to duty cycle to output the PWM, then the servo

will rotate a specific angle. However, in practice, due to the manufacture error of each servo, pulse width will

also have deviation. So we define a minimum pulse width and a maximum one and an error offset.

 OFFSE_DUTY = 0.5 #define pulse offset of servo

SERVO_MIN_DUTY = 2.5+OFFSE_DUTY #define pulse duty cycle for minimum angle of servo

SERVO_MAX_DUTY = 12.5+OFFSE_DUTY #define pulse duty cycle for maximum angle of servo

……

def servoWrite(angle): #make the servo rotate to specific angle (0-180 degrees)

 if(angle<0):

 angle = 0

 elif(angle > 180):

 angle = 180

 p.ChangeDutyCycle(map(angle,0,180,SERVO_MIN_DUTY,SERVO_MAX_DUTY))

http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo 160 www.freenove.com █

█ support@freenove.com

Finally, in the "while" cycle of main function, use two "for" cycle to make servo rotate from 0 degrees to 180

degrees, and then from 180 degrees to 0 degrees.

 def loop():

 while True:

 for dc in range(0, 181, 1): #make servo rotate from 0°to 180°

 servoWrite(dc) # Write to servo

 time.sleep(0.001)

 time.sleep(0.5)

 for dc in range(180, -1, -1): #make servo rotate from 180°to 0°

 servoWrite(dc)

 time.sleep(0.001)

 time.sleep(0.5)

http://www.freenove.com/
mailto:support@freenove.com

161 Chapter 16 Stepping Motor

█ www.freenove.com

support@freenove.com █

Chapter 16 Stepping Motor

We have learned DC motor and servo before: the DC motor can rotate constantly but we can not make it

rotate to a specific angle. On the contrary, the ordinary servo can rotate to a certain angle but can not rotate

constantly. In this chapter, we will learn a motor which can rotate not only constantly, but also to a specific

angle, stepping motor. Using stepping motor can achieve higher accuracy of mechanical motion easily.

Project 16.1 Stepping Motor

In this project, we will learn how to drive stepping motor, and understand its working principle.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

Jumper

Stepping Motor x1

ULN2003 Stepping motorDriver x1

http://www.freenove.com/
mailto:support@freenove.com

Chapter 16 Stepping Motor 162 www.freenove.com █

█ support@freenove.com

Component knowledge

Stepping Motor

Stepping motor is an open-loop control device which converts the electric pulse signal into angular

displacement or linear displacement. In non-overload condition, the speed of the motor and the location of

the stop depends only on the pulse signal frequency and pulse number, and not affected by the load changes.

A small four-phase deceleration stepping motor is shown as follows:

The schematic diagram of four-phase stepping motor is shown below:

The outside piece is the stator and the inside is the rotor of the motor. There are a certain number of coils,

usually integer multiple of phases number, in the stator and when powered on, an electromagnet will be

formed to attract a convex part (usually iron or permanent magnet) of the rotor. Therefore, the electric

motor can be driven by conducting the coils on stator orderly.

http://www.freenove.com/
mailto:support@freenove.com

163 Chapter 16 Stepping Motor

█ www.freenove.com

support@freenove.com █

A common driving process is as follows:

In the course above, the stepping motor rotates a certain angle once, which is called a step. By controlling

the number of rotation steps, you can control the stepping motor rotation angle. By controlling the time

between two steps, you can control the stepping motor rotation speed. When rotating clockwise, the order

of coil powered on is: ABCDA…… . And the rotor will rotate in accordance with the order, step by

step down, called four steps four pats. If the coils is powered on in the reverse order, DCBAD… ,

the rotor will rotate in anti-clockwise direction.

Stepping motor has other control methods, such as connect A phase, then connect A B phase, the stator will

be located in the middle of the A B, only a half-step. This way can improve the stability of stepping motor,

and reduce noise, the sequence of coil powered on is: AABBBCCCDDDAA……, the rotor

will rotate in accordance with the order, a half step by a half step, called four step eight pat. Equally, if the coil

is powered on in reverse order, the stepping motor will rotate in reverse rotation.

The stator of stepping motor we use has 32 magnetic poles, so a circle needs 32 steps. The output shaft of

the stepping motor is connected with a reduction gear set, and the reduction ratio is 1/64. So the final output

shaft rotates a circle requiring a 32*64=2048 step.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 16 Stepping Motor 164 www.freenove.com █

█ support@freenove.com

ULN2003 Stepping motor driver

ULN2003 stepping motor driver is used to convert the weak signal into powerful control signal to drive the

stepping motor. The input signal IN1-IN4 corresponds to the output signal A-D, and4 LED is integrated in

the board to indicate the state of signals. The PWR interface can be used as a power supply for stepping

motor. By default, PWR and VCC are connected by a short circuit.

Circuit

When building the circuit, the rated voltage of the stepping motor 5V, and use the breadboard power supply

independently, and do not use the RPi power supply. Additionally, breadboard power supply needs to share

Ground with RPi.

Schematic diagram

http://www.freenove.com/
mailto:support@freenove.com

165 Chapter 16 Stepping Motor

█ www.freenove.com

support@freenove.com █

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 16 Stepping Motor 166 www.freenove.com █

█ support@freenove.com

Code

This code use four step four pat mode to drive the stepping motor forward and reverse direction.

C Code 16.1.1 SteppingMotor

First observe the project result, and then analyze the code.

1. Use cd command to enter 16.1.1_SteppingMotor directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/16.1.1_SteppingMotor

2. Use following command to compile "SteppingMotor.c" and generate executable file "SteppingMotor".

gcc SteppingMotor.c –o SteppingMotor–lwiringPi

3. Run the generated file "SteppingMotor".

sudo ./SteppingMotor

After the program is executed, the stepping motor will rotate 360° clockwise and then 360° anticlockwise,

circularly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

#include <stdio.h>

#include <wiringPi.h>

const int motorPins[]={1,4,5,6}; //define pins connected to four phase ABCD of

stepping motor

const int CCWStep[]={0x01,0x02,0x04,0x08}; //define power supply order for coil for

rotating anticlockwise

const int CWStep[]={0x08,0x04,0x02,0x01}; //define power supply order for coil for

rotating clockwise

//as for four phase stepping motor, four steps is a cycle. the function is used to drive

the stepping motor clockwise or anticlockwise to take four steps

void moveOnePeriod(int dir,int ms){

 int i=0,j=0;

 for (j=0;j<4;j++){ //cycle according to power supply order

 for (i=0;i<4;i++){ //assign to each pin, a total of 4 pins

 if(dir == 1) //power supply order clockwise

 digitalWrite(motorPins[i],(CCWStep[j] == (1<<i)) ? HIGH : LOW);

 else //power supply order anticlockwise

 digitalWrite(motorPins[i],(CWStep[j] == (1<<i)) ? HIGH : LOW);

 printf("motorPin %d, %d \n",motorPins[i],digitalRead(motorPins[i]));

 }

 printf("Step cycle!\n");

 if(ms<3) //the delay can not be less than 3ms, otherwise it will exceed

speed limit of the motor

 ms=3;

 delay(ms);

 }

}

http://www.freenove.com/
mailto:support@freenove.com

167 Chapter 16 Stepping Motor

█ www.freenove.com

support@freenove.com █

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

//continuous rotation function, the parameter steps specifies the rotation cycles, every

four steps is a cycle

void moveSteps(int dir, int ms, int steps){

 int i;

 for(i=0;i<steps;i++){

 moveOnePeriod(dir,ms);

 }

}

void motorStop(){ //function used to stop rotating

 int i;

 for(i=0;i<4;i++){

 digitalWrite(motorPins[i],LOW);

 }

}

int main(void){

 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 for(i=0;i<4;i++){

 pinMode(motorPins[i],OUTPUT);

 }

 while(1){

 moveSteps(1,3,512); //rotating 360° clockwise, a total of 2048 steps in a

circle, namely, 512 cycles.

 delay(500);

 moveSteps(0,3,512); //rotating 360° anticlockwise

 delay(500);

 }

 return 0;

}

In the code, define four pins of stepping motor and coil power supply order of four steps rotation mode.

 const int motorPins[]={1,4,5,6}; //define pins connected to four phase ABCD of stepper

motor

const int CCWStep[]={0x01,0x02,0x04,0x08}; //define power supply order for coil for

rotating anticlockwise

const int CWStep[]={0x08,0x04,0x02,0x01}; //define power supply order for coil for

rotating clockwise

Subfunction moveOnePeriod ((int dir,int ms) will drive the stepping motor rotating four step clockwise or

anticlockwise, four step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the servo

will rotate forward, otherwise it rotates to reverse direction. Parameter "ms" indicates the time between each

http://www.freenove.com/
mailto:support@freenove.com

Chapter 16 Stepping Motor 168 www.freenove.com █

█ support@freenove.com

two steps. The "ms" of stepping motor used in this project is 3ms (the shortest time), less than 3ms will exceed

the speed limit of stepping motor resulting in that motor can not rotate.

 void moveOnePeriod(int dir,int ms){

 int i=0,j=0;

 for (j=0;j<4;j++){ //cycle according to power supply order

 for (i=0;i<4;i++){ //assign to each pin, a total of 4 pins

 if(dir == 1) //power supply order clockwise

 digitalWrite(motorPins[i],(CCWStep[j] == (1<<i)) ? HIGH : LOW);

 else //power supply order anticlockwise

 digitalWrite(motorPins[i],(CWStep[j] == (1<<i)) ? HIGH : LOW);

 printf("motorPin %d, %d \n",motorPins[i],digitalRead(motorPins[i]));

 }

 printf("Step cycle!\n");

 if(ms<3) //the delay can not be less than 3ms, otherwise it will exceed

speed limit of the motor

 ms=3;

 delay(ms);

 }

}

Subfunction moveSteps (int dir, int ms, int steps) is used to specific cycle number of stepping motor.

 void moveSteps(int dir, int ms, int steps){

 int i;

 for(i=0;i<steps;i++){

 moveOnePeriod(dir,ms);

 }

}

Subfunction motorStop () is used to stop the stepping motor.

 void motorStop(){ //function used to stop rotating

 int i;

 for(i=0;i<4;i++){

 digitalWrite(motorPins[i],LOW);

 }

}

Finally, in the while cycle of main function, rotate one circle clockwise, and then one circle anticlockwise.

According to the previous knowledge of the stepping motor, it can be known that the stepping motor rotation

for one circle requires 2048 steps, that is, 2048/4=512 cycle.

 while(1){

 moveSteps(1,3,512); //rotating 360° clockwise, a total of 2048 steps in a

circle, namely, this function(four steps) will be called 512 times.

 delay(500);

 moveSteps(0,3,512); //rotating 360° anticlockwise

 delay(500);

 }

http://www.freenove.com/
mailto:support@freenove.com

169 Chapter 16 Stepping Motor

█ www.freenove.com

support@freenove.com █

Python Code 16.1.1 SteppingMotor

First observe the project result, and then analyze the code.

1. Use cd command to enter 16.1.1_SteppingMotor directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/16.1.1_ SteppingMotor

2. Use python command to execute code "SteppingMotor.py".

python SteppingMotor.py

After the program is executed, the stepping motor will rotate 360° clockwise and then 360° anticlockwise,

circularly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

import RPi.GPIO as GPIO

import time

motorPins = (12, 16, 18, 22) #define pins connected to four phase ABCD of stepper

motor

CCWStep = (0x01,0x02,0x04,0x08) #define power supply order for coil for rotating

anticlockwise

CWStep = (0x08,0x04,0x02,0x01) #define power supply order for coil for rotating

clockwise

def setup():

 print 'Program is starting...'

 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

 for pin in motorPins:

 GPIO.setup(pin,GPIO.OUT)

#as for four phase stepping motor, four steps is a cycle. the function is used to drive

the stepping motor clockwise or anticlockwise to take four steps

def moveOnePeriod(direction,ms):

 for j in range(0,4,1): #cycle for power supply order

 for i in range(0,4,1): #assign to each pin, a total of 4 pins

 if (direction == 1):#power supply order clockwise

 GPIO.output(motorPins[i],((CCWStep[j] == 1<<i) and GPIO.HIGH orGPIO.LOW))

 else : #power supply order anticlockwise

 GPIO.output(motorPins[i],((CWStep[j] == 1<<i) and GPIO.HIGH or GPIO.LOW))

 if(ms<3): #the delay can not be less than 3ms, otherwise it will exceed

speed limit of the motor

 ms = 3

 time.sleep(ms*0.001)

#continuous rotation function, the parameter steps specifies the rotation cycles, every

four steps is a cycle

def moveSteps(direction, ms, steps):

 for i in range(steps):

 moveOnePeriod(direction, ms)

#function used to stop rotating

def motorStop():

http://www.freenove.com/
mailto:support@freenove.com

Chapter 16 Stepping Motor 170 www.freenove.com █

█ support@freenove.com

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

 for i in range(0,4,1):

 GPIO.output(motorPins[i],GPIO.LOW)

def loop():

 while True:

 moveSteps(1,3,512) #rotating 360° clockwise, a total of 2048 steps in a

circle, namely, 512 cycles.

 time.sleep(0.5)

 moveSteps(0,3,512) #rotating 360° anticlockwise

 time.sleep(0.5)

def destroy():

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

In the code, define four pins of stepping motor and coil power supply order of four steps rotation mode.

 motorPins = (12, 16, 18, 22) #define pins connected to four phase ABCD of stepper

motor

CCWStep = (0x01,0x02,0x04,0x08) #define power supply order for coil for rotating

anticlockwise

CWStep = (0x08,0x04,0x02,0x01) #define power supply order for coil for rotating

clockwise

Subfunction moveOnePeriod (direction, ms) will drive the stepping motor rotating four step clockwise or

anticlockwise, four step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the servo

will rotate forward, otherwise it rotates to reverse direction. Parameter "ms" indicates the time between each

two steps. The "ms" of stepping motor used in this project is 3ms (the shortest time), less than 3ms will exceed

the speed limit of stepping motor resulting in that motor can not rotate.

 def moveOnePeriod(direction,ms):

 for j in range(0,4,1): #cycle for power supply order

 for i in range(0,4,1): #assign to each pin, a total of 4 pins

 if (direction == 1):#power supply order clockwise

 GPIO.output(motorPins[i],((CCWStep[j] == 1<<i) and GPIO.HIGH orGPIO.LOW))

 else : #power supply order anticlockwise

 GPIO.output(motorPins[i],((CWStep[j] == 1<<i) and GPIO.HIGH or GPIO.LOW))

 if(ms<3): #the delay can not be less than 3ms, otherwise it will exceed

speed limit of the motor

 ms = 3

http://www.freenove.com/
mailto:support@freenove.com

171 Chapter 16 Stepping Motor

█ www.freenove.com

support@freenove.com █

 time.sleep(ms*0.001)

Subfunction moveSteps (direction, ms, steps) is used to specific cycle number of stepping motor.

 def moveSteps(direction, ms, steps):

 for i in range(steps):

 moveOnePeriod(direction, ms)

Subfunction motorStop () is used to stop the stepping motor.

 def motorStop():

 for i in range(0,4,1):

 GPIO.output(motorPins[i],GPIO.LOW)

Finally, in the while cycle of main function, rotate one circle clockwise, and then one circle anticlockwise.

According to the previous knowledge of the stepping motor, it can be known that the stepping motor rotation

for one circle requires 2048 steps, that is, 2048/4=512 cycle.

 while True:

 moveSteps(1,3,512) #rotating 360° clockwise, a total of 2048 steps in a

circle, namely, 512 cycles.

 time.sleep(0.5)

 moveSteps(0,3,512) #rotating 360° anticlockwise

 time.sleep(0.5)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 17 74HC595 & LEDBar Graph 172 www.freenove.com █

█ support@freenove.com

Chapter 17 74HC595 & LEDBar Graph

We have used LEDBar Graph to make a flowing water light, in which 10 GPIO ports of RPi is occupied. More

GPIO ports mean that more peripherals can be connected to RPi, so GPIO resource is very precious. Can we

make flowing water light with less GPIO? In this chapter, we will learn a component, 74HC595, which can

achieve the target.

Project 17.1 Flowing Water Light

Now let‘s learn how to use 74HC595 to make a flowing water light with less GPIO.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

74HC595 x1

LEDBar Graph x1

Resistor 220Ω x8

http://www.freenove.com/
mailto:support@freenove.com

173 Chapter 17 74HC595 & LEDBar Graph

█ www.freenove.com

support@freenove.com █

Component knowledge

74HC595

74HC595 chip is used to convert serial data into parallel data. 74HC595 can convert the serial data of one

byte to 8 bits, and send its corresponding level to the corresponding 8 ports. With this feature, 74HC595 can

be used to expand the IO port of Arduino board. At least 3 ports on the RPI board are need to control 8 ports

of 74HC595.

The ports of 74HC595 are described as follows:

Pin name Pin number Description

Q0-Q7 15, 1-7 Parallel data output

VCC 16 The positive electrode of power supply, the voltage is 2~6V

GND 8 The negative electrode of power supply

DS 14 Serial data Input

OE 13 Enable output,

When this pin is in high level, Q0-Q7 is in high resistance state

When this pin is in low level, Q0-Q7 is in output mode

ST_CP 12 Parallel update output: when its electrical level is rising, it will update the

parallel data output.

SH_CP 11 Serial shift clock: when its electrical level is rising, serial data input register will

do a shift.

MR 10 Remove shift register: When this pin is in low level, the content in shift register

will be cleared .

Q7' 9 Serial data output: it can be connected to more 74HC595 in series.

For more detail, please refer to the datasheet.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 17 74HC595 & LEDBar Graph 174 www.freenove.com █

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

175 Chapter 17 74HC595 & LEDBar Graph

█ www.freenove.com

support@freenove.com █

Code

In this project, make a flowing water light with 74HC595 to learn its usage.

C Code 17.1.1 LightWater02

First observe the project result, and then analyze the code.

1. Use cd command to enter 17.1.1_LightWater02 directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/17.1.1_LightWater02

2. Use following command to compile “LightWater02.c” and generate executable file “LightWater02”.

gcc LightWater02.c –o LightWater02 –lwiringPi

3. Then run the generated file “LightWater02”.

sudo ./LightWater02

After the program is executed, LEDBar Graph begin to display flowing water light from left to right, then from

right to left.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

#include <wiringPi.h>

#include <stdio.h>

#include <wiringShift.h>

#define dataPin 0 //DS Pin of 74HC595(Pin14)

#define latchPin 2 //ST_CP Pin of 74HC595(Pin12)

#define clockPin 3 //CH_CP Pin of 74HC595(Pin11)

void _shiftOut(int dPin,int cPin,int order,int val){

 int i;

 for(i = 0; i < 8; i++){

 digitalWrite(cPin,LOW);

 if(order == LSBFIRST){

 digitalWrite(dPin,((0x01&(val>>i)) == 0x01) ? HIGH : LOW);

 delayMicroseconds(10);

 }

 else {//if(order == MSBFIRST){

 digitalWrite(dPin,((0x80&(val<<i)) == 0x80) ? HIGH : LOW);

 delayMicroseconds(10);

 }

 digitalWrite(cPin,HIGH);

 delayMicroseconds(10);

 }

}

int main(void)

{

 int i;

 unsigned char x;

http://www.freenove.com/
mailto:support@freenove.com

Chapter 17 74HC595 & LEDBar Graph 176 www.freenove.com █

█ support@freenove.com

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen

 printf("setup wiringPi failed !");

 return 1;

 }

 pinMode(dataPin,OUTPUT);

 pinMode(latchPin,OUTPUT);

 pinMode(clockPin,OUTPUT);

 while(1){

 x=0x01;

 for(i=0;i<8;i++){

 digitalWrite(latchPin,LOW); // Output low level to latchPin

 _shiftOut(dataPin,clockPin,LSBFIRST,x);// Send serial data to 74HC595

 digitalWrite(latchPin,HIGH); // Output high level to latchPin, and 74HC595

will update the data to the parallel output port.

 x<<=1; // make the variable move one bit to left once, then the bright LED

move one step to the left once.

 delay(100);

 }

 x=0x80;

 for(i=0;i<8;i++){

 digitalWrite(latchPin,LOW);

 _shiftOut(dataPin,clockPin,LSBFIRST,x);

 digitalWrite(latchPin,HIGH);

 x>>=1;

 delay(100);

 }

 }

 return 0;

}

In the code, we configure three pins to control the 74HC595. And define a one-byte variable to control the

state of 8 LEDs through the 8 bits of the variable. The LED lights on when the corresponding bit is 1. If the

variable is assigned to 0x01, that is 00000001 in binary, there will be only one LED on.

 x=0x01;

In the “while” cycle of main function, use “for” cycle to send x to 74HC595 output pin to control the LED. In

“for” cycle, x will be shift one bit to left in one cycle, then in the next round when data of x is sent to 74HC595,

the LED turned on will move one bit to left once.

 for(i=0;i<8;i++){

 digitalWrite(latchPin,LOW); // Output low level to latchPin

 _shiftOut(dataPin,clockPin,LSBFIRST,x);// Send serial data to 74HC595

 digitalWrite(latchPin,HIGH); // Output high level to latchPin, and 74HC595

will update the data to the parallel output port.

 x<<=1; // make the variable move one bit to left once, then the bright LED

move one step to the left once.

 delay(100);

http://www.freenove.com/
mailto:support@freenove.com

177 Chapter 17 74HC595 & LEDBar Graph

█ www.freenove.com

support@freenove.com █

 }

In second “for” cycle, the situation is the same. The difference is that x is shift from 0x80 to right in order.

<< operator

"<<" is the left shift operator, which can make all bits of 1 byte shift by several bits to the left (high) direction

and add 0 on the right (low). For example, shift binary 00000001 by 1 bit to left:

byte x = 1 << 1;

← ← ← ← ← ← ←

 ← 0 0 0 0 0 0 0 1 ← 0

The result of x is 2（binary 00000010）.

 0 0 0 0 0 0 1 0

There is another similar operator" >>". For example, shift binary 00000001 by 1 bit to right:

 byte x = 1 >> 1;

→ → → → → → →

0 → 0 0 0 0 0 0 0 1 →

The result of x is 0（00000000）.

 0 0 0 0 0 0 0 0

X <<= 1 is equivalent to x = x << 1 and x >>= 1 is equivalent to x = x >> 1

About shift function：

uint8_t shiftIn (uint8_t dPin, uint8_t cPin, uint8_t order) ;

This is used to shift an 8-bit data value in with the data appearing on the dPin and the clock being sent out

on the cPin. Order is either LSBFIRST or MSBFIRST. The data is sampled after the cPin goes high. (So cPin

high, sample data, cPin low, repeat for 8 bits) The 8-bit value is returned by the function.

void shiftOut (uint8_t dPin, uint8_t cPin, uint8_t order, uint8_t val) ;

void _shiftOut (uint8_t dPin, uint8_t cPin, uint8_t order, uint8_t val) ;

This is used to shift an 8-bit data value out with the data being sent out on dPin and the clock being sent

out on the cPin. order is as above. Data is clocked out on the rising or falling edge – ie. dPin is set, then

cPin is taken high then low – repeated for the 8 bits.

For more details about shift function, please refer to: http://wiringpi.com/reference/shift-library/

Python Code 17.1.1 LightWater02

First observe the project result, and then analyze the code.

1. Use cd command to enter 17.1.1_LightWater02 directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/17.1.1_LightWater02

2. Use python command to execute python code “LightWater02.py”.

python LightWater02.py

After the program is executed, LEDBar Graph begin to display flowing water light from left to right, then from

right to left.

The following is the program code:

1

2

3

4

import RPi.GPIO as GPIO

import time

Defines the data bit that is transmitted preferentially in the shiftOut function.

LSBFIRST = 1

http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/reference/shift-library/

Chapter 17 74HC595 & LEDBar Graph 178 www.freenove.com █

█ support@freenove.com

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MSBFIRST = 2

#define the pins connect to 74HC595

dataPin = 11 #DS Pin of 74HC595(Pin14)

latchPin = 13 #ST_CP Pin of 74HC595(Pin12)

clockPin = 15 #SH_CP Pin of 74HC595(Pin11)

def setup():

 GPIO.setmode(GPIO.BOARD) # Number GPIOs by its physical location

 GPIO.setup(dataPin, GPIO.OUT)

 GPIO.setup(latchPin, GPIO.OUT)

 GPIO.setup(clockPin, GPIO.OUT)

shiftOut function, use bit serial transmission.

def shiftOut(dPin,cPin,order,val):

 for i in range(0,8):

 GPIO.output(cPin,GPIO.LOW);

 if(order == LSBFIRST):

 GPIO.output(dPin,(0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)

 elif(order == MSBFIRST):

 GPIO.output(dPin,(0x80&(val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)

 GPIO.output(cPin,GPIO.HIGH);

def loop():

 while True:

 x=0x01

 for i in range(0,8):

 GPIO.output(latchPin,GPIO.LOW) #Output low level to latchPin

 shiftOut(dataPin,clockPin,LSBFIRST,x)#Send serial data to 74HC595

 GPIO.output(latchPin,GPIO.HIGH)#Output high level to latchPin, and 74HC595

will update the data to the parallel output port.

 x<<=1# make the variable move one bit to left once, then the bright LED move

one step to the left once.

 time.sleep(0.1)

 x=0x80

 for i in range(0,8):

 GPIO.output(latchPin,GPIO.LOW)

 shiftOut(dataPin,clockPin,LSBFIRST,x)

 GPIO.output(latchPin,GPIO.HIGH)

 x>>=1

 time.sleep(0.1)

def destroy(): # When 'Ctrl+C' is pressed, the function is executed.

 GPIO.cleanup()

if __name__ == '__main__': # Program starting from here

http://www.freenove.com/
mailto:support@freenove.com

179 Chapter 17 74HC595 & LEDBar Graph

█ www.freenove.com

support@freenove.com █

49

50

51

52

53

54

 print ('Program is starting...')

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

In the code, we define a shiftOut() function, which is used to output value with bit in order. And where the

dPin for the data pin, cPin for the clock and order for the priority bit flag (high or low). This function conforms

to the operation mode of 74HC595.

 def shiftOut(dPin,cPin,order,val):

 for i in range(0,8):

 GPIO.output(cPin,GPIO.LOW);

 if(order == LSBFIRST):

 GPIO.output(dPin,(0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)

 elif(order == MSBFIRST):

 GPIO.output(dPin,(0x80&(val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)

 GPIO.output(cPin,GPIO.HIGH);

In the loop () function, we use two “for” cycle to achieve the target. First, define a variable x=0x01, binary

00000001. When it is transferred to the output port of 74HC595, the low bit outputs high level, then a LED is

turned on. Next, x is shifted one bit, when x is transferred to the output port of 74HC595 once again, the LED

turned on will be shifted. Repeat the operation, the effect of flowing water light will be formed. If the direction

of the shift operation for x is different, the flowing direction is different.

 def loop():

 while True:

 x=0x01

 for i in range(0,8):

 GPIO.output(latchPin,GPIO.LOW) #Output low level to latchPin

 shiftOut(dataPin,clockPin,LSBFIRST,x)#Send serial data to 74HC595

 GPIO.output(latchPin,GPIO.HIGH)#Output high level to latchPin, and 74HC595

will update the data to the parallel output port.

 x<<=1# make the variable move one bit to left once, then the bright LED move

one step to the left once.

 time.sleep(0.1)

 x=0x80

 for i in range(0,8):

 GPIO.output(latchPin,GPIO.LOW)

 shiftOut(dataPin,clockPin,LSBFIRST,x)

 GPIO.output(latchPin,GPIO.HIGH)

 x>>=1

 time.sleep(0.1)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 18 74HC595 & 7-segment display. 180 www.freenove.com █

█ support@freenove.com

Chapter 18 74HC595 & 7-segment display.

In this chapter, we will learn a new component, 7-segment display.

Project 18.1 7-segment display.

We will use 74HC595 to control 7-segment display. and make it display sixteen decimal character "0-F".

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

74HC595 x1

7-segment display x1

Resistor 220Ω x8

http://www.freenove.com/
mailto:support@freenove.com

181 Chapter 18 74HC595 & 7-segment display.

█ www.freenove.com

support@freenove.com █

Component knowledge

7-segment display

7-segment display is a digital electronic display device. There is a figure of "8" and a decimal point, which

consist of 8 LED. According to the difference about common cathode and anode. its internal structure and

pins diagram is shown below:

As is known from the above circuit diagram that we can control the state of each LED separately. So, through

combining LED with different state, we can display different numbers. For example, display figure 0: we need

to turn on LED segment A, B, C, D, E, F, and turn off LED segment G and DP.

In this project, we use a display 7-segment (common anode). Therefore, when the input low level to a LED

segment, the LED will be turned on. Define segment “A” as the lowest level, the segment “DP” as the highest

level, that is, from high to low: “DP”, “G”, “F”, “E”, “D”, “C”, “B”, “A”. And character "0" corresponds to the code:

1100 0000b=0xc0.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 18 74HC595 & 7-segment display. 182 www.freenove.com █

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

183 Chapter 18 74HC595 & 7-segment display.

█ www.freenove.com

support@freenove.com █

Code

In this code, uses 74HC595 to control the 7-segment display. The usage of 74HC595 is generally the same to

last section. The content 74HC595 outputs is different. We need code character “0”- “F” one by one, and then

output them with 74HC595.

C Code 18.1.1 SevenSegmentDisplay

First observe the project result, and then analyze the code.

1. Use cd command to enter 18.1.1_SevenSegmentDisplay directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/18.1.1_SevenSegmentDisplay

2. Use following command to compile “SevenSegmentDisplay.c” and generate executable file

“SevenSegmentDisplay”.

gcc SevenSegmentDisplay.c –o SevenSegmentDisplay –lwiringPi

3. Then run the generated file “SevenSegmentDisplay”.

sudo ./SevenSegmentDisplay

After the program is executed, SevenSegmentDisplay starts to display the character “0”- “F” successively.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#include <wiringPi.h>

#include <stdio.h>

#include <wiringShift.h>

#define dataPin 0 //DS Pin of 74HC595(Pin14)

#define latchPin 2 //ST_CP Pin of 74HC595(Pin12)

#define clockPin 3 //CH_CP Pin of 74HC595(Pin11)

//encoding for character 0-F of common anode SevenSegmentDisplay.

unsigned char

num[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};

void _shiftOut(int dPin,int cPin,int order,int val){

 int i;

 for(i = 0; i < 8; i++){

 digitalWrite(cPin,LOW);

 if(order == LSBFIRST){

 digitalWrite(dPin,((0x01&(val>>i)) == 0x01) ? HIGH : LOW);

 delayMicroseconds(10);

 }

 else {//if(order == MSBFIRST){

 digitalWrite(dPin,((0x80&(val<<i)) == 0x80) ? HIGH : LOW);

 delayMicroseconds(10);

 }

 digitalWrite(cPin,HIGH);

 delayMicroseconds(10);

 }

}

http://www.freenove.com/
mailto:support@freenove.com

Chapter 18 74HC595 & 7-segment display. 184 www.freenove.com █

█ support@freenove.com

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

int main(void)

{

 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen

 printf("setup wiringPi failed !");

 return 1;

 }

 pinMode(dataPin,OUTPUT);

 pinMode(latchPin,OUTPUT);

 pinMode(clockPin,OUTPUT);

 while(1){

 for(i=0;i<sizeof(num);i++){

 digitalWrite(latchPin,LOW);

 _shiftOut(dataPin,clockPin,MSBFIRST,num[i]);//Output the figures and the

highest level is transfered preferentially.

 digitalWrite(latchPin,HIGH);

 delay(500);

 }

 for(i=0;i<sizeof(num);i++){

 digitalWrite(latchPin,LOW);

 _shiftOut(dataPin,clockPin,MSBFIRST,num[i] & 0x7f);//Use the "&0x7f" to

display the decimal point.

 digitalWrite(latchPin,HIGH);

 delay(500);

 }

 }

 return 0;

}

First, put encoding of “0”-“F” into the array.

 unsigned char

num[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};

In the “for” cycle of loop() function, use 74HC595 to output contents of array “num” successively.

SevenSegmentDisplay can correctly display the corresponding characters. Pay attention to that in shiftOut

function, the transmission bit, flag bit highest bit will be transmitted preferentially.

 for(i=0;i<sizeof(num);i++){

 digitalWrite(latchPin,LOW);

 _shiftOut(dataPin,clockPin,MSBFIRST,num[i]);//Output the figures and the

highest level is transfered preferentially.

 digitalWrite(latchPin,HIGH);

 delay(500);

 }

http://www.freenove.com/
mailto:support@freenove.com

185 Chapter 18 74HC595 & 7-segment display.

█ www.freenove.com

support@freenove.com █

If you want to display the decimal point, make the highest bit of each array become 0, which can be

implemented easily by num[i]&0x7f.

 _shiftOut(dataPin,clockPin,MSBFIRST,num[i] & 0x7f);

Python Code 18.1.1 SevenSegmentDisplay

First observe the project result, and then analyze the code.

1. Use cd command to enter 18.1.1_SevenSegmentDisplay directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/18.1.1_SevenSegmentDisplay

2. Use python command to execute python code “SevenSegmentDisplay.py”.

python SevenSegmentDisplay.py

After the program is executed, SevenSegmentDisplay starts to display the character “0”- “F” successively.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

import RPi.GPIO as GPIO

import time

LSBFIRST = 1

MSBFIRST = 2

#define the pins connect to 74HC595

dataPin = 11 #DS Pin of 74HC595(Pin14)

latchPin = 13 #ST_CP Pin of 74HC595(Pin12)

clockPin = 15 #CH_CP Pin of 74HC595(Pin11)

#SevenSegmentDisplay display the character "0"- "F"successively

num = [0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e]

def setup():

 GPIO.setmode(GPIO.BOARD) # Number GPIOs by its physical location

 GPIO.setup(dataPin, GPIO.OUT)

 GPIO.setup(latchPin, GPIO.OUT)

 GPIO.setup(clockPin, GPIO.OUT)

def shiftOut(dPin,cPin,order,val):

 for i in range(0,8):

 GPIO.output(cPin,GPIO.LOW);

 if(order == LSBFIRST):

 GPIO.output(dPin,(0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)

 elif(order == MSBFIRST):

 GPIO.output(dPin,(0x80&(val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)

 GPIO.output(cPin,GPIO.HIGH);

def loop():

 while True:

 for i in range(0,len(num)):

 GPIO.output(latchPin,GPIO.LOW)

 shiftOut(dataPin,clockPin,MSBFIRST,num[i])#Output the figures and the highest

level is transfered preferentially.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 18 74HC595 & 7-segment display. 186 www.freenove.com █

█ support@freenove.com

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

 GPIO.output(latchPin,GPIO.HIGH)

 time.sleep(0.5)

 for i in range(0,len(num)):

 GPIO.output(latchPin,GPIO.LOW)

 shiftOut(dataPin,clockPin,MSBFIRST,num[i]&0x7f)#Use "&0x7f"to display the

decimal point.

 GPIO.output(latchPin,GPIO.HIGH)

 time.sleep(0.5)

def destroy(): # When 'Ctrl+C' is pressed, the function is executed.

 GPIO.cleanup()

if __name__ == '__main__': # Program starting from here

 print ('Program is starting...')

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

First, put encoding of “0”-“F” into the array.

 num = [0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e]

In the “for” cycle of loop() function, use 74HC595 to output contents of array “num” successively.

SevenSegmentDisplay can correctly display the corresponding characters. Pay attention to that in shiftOut

function, the transmission bit, flag bit highest bit will be transmitted preferentially.

 for i in range(0,len(num)):

 GPIO.output(latchPin,GPIO.LOW)

 shiftOut(dataPin,clockPin,MSBFIRST,num[i])#Output the figures and the highest

level is transfered preferentially.

 GPIO.output(latchPin,GPIO.HIGH)

 time.sleep(0.5)

If you want to display the decimal point, make the highest bit of each array become 0, which can be

implemented easily by num[i]&0x7f.

 shiftOut(dataPin,clockPin,MSBFIRST,num[i]&0x7f)# Use “&0x7f”to display the decimal

point.

http://www.freenove.com/
mailto:support@freenove.com

187 Chapter 18 74HC595 & 7-segment display.

█ www.freenove.com

support@freenove.com █

Project 18.2 4-Digit 7-segment display

Now, let’s try to control more Digit 7-segment display

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

Jumper

74HC595 x1

PNP

transistor x4

4-Digit 7-segment display x1

Resistor 220Ω

x8

Resistor 1KΩ

x4

http://www.freenove.com/
mailto:support@freenove.com

Chapter 18 74HC595 & 7-segment display. 188 www.freenove.com █

█ support@freenove.com

Component knowledge

4 Digit 7-Segment Display

4 Digit 7-segment display integrates four 7-segment display, so it can display more numbers. According to

the difference about common cathode and anode. its internal structure and pins diagram is shown below:

The internal circuit is shown below, and all 8 LED cathode pins of each 7-segment display are connected

together.

Display method of 4 Digit 7-segment display is similar to 1 Digit 7-segment display. The difference between

them is that 4-Digit display in turn, one by one, not together. First send high level to common end of the first

tube, and send low level to the rest of the three common end, and then send content to 8 LED cathode pins

of the first tube. At this time, the first 7-segment display will display content and the rest three one in closed

state.

Similarly, the second, third, fourth 7-segment display the content in turn, namely, scan display. Although the

four numbers are displayed in turn separately, but this process is very fast, and due to the optical afterglow

effect and people in vision persistence effect, we can see all 4 numbers at the same time. On the contrary, if

each figure is displayed for a long time, you can see that the numbers are displayed separately.

http://www.freenove.com/
mailto:support@freenove.com

189 Chapter 18 74HC595 & 7-segment display.

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

http://www.freenove.com/
mailto:support@freenove.com

Chapter 18 74HC595 & 7-segment display. 190 www.freenove.com █

█ support@freenove.com

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

191 Chapter 18 74HC595 & 7-segment display.

█ www.freenove.com

support@freenove.com █

Code

In this code, we use 74HC595 to control 4-Digit 7-segment display, and use dynamic scanning way to show

the changing numbers.

C Code 18.2.1 StopWatch

First observe the project result, and then analyze the code.

1. Use cd command to enter 16.1.1_SteppingMotor directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/18.2.1_StopWatch

2. Use following command to compile "StopWatch.c" and generate executable file "StopWatch".

gcc StopWatch.c –o StopWatch –lwiringPi

3. Run the generated file "SteppingMotor".

sudo ./StopWatch

After the program is executed, 4-Digit 7-segment start displaying a four-digit number dynamically, and the

will plus 1 in each successive second.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#include <wiringPi.h>

#include <stdio.h>

#include <wiringShift.h>

#include <signal.h>

#include <unistd.h>

#define dataPin 5 //DS Pin of 74HC595(Pin14)

#define latchPin 4 //ST_CP Pin of 74HC595(Pin12)

#define clockPin 1 //CH_CP Pin of 74HC595(Pin11)

const int digitPin[]={0,2,3,12}; // Define 7-segment display common pin

// character 0-9 code of common anode 7-segment display

unsigned char num[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};

int counter = 0; //variable counter,the number will be displayed by 7-segment display

//Open one of the 7-segment display and close the remaining three, the parameter digit is

optional for 1,2,4,8

void selectDigit(int digit){

 digitalWrite(digitPin[0],((digit&0x08) == 0x08) ? LOW : HIGH);

 digitalWrite(digitPin[1],((digit&0x04) == 0x04) ? LOW : HIGH);

 digitalWrite(digitPin[2],((digit&0x02) == 0x02) ? LOW : HIGH);

 digitalWrite(digitPin[3],((digit&0x01) == 0x01) ? LOW : HIGH);

}

void _shiftOut(int dPin,int cPin,int order,int val){

 int i;

 for(i = 0; i < 8; i++){

 digitalWrite(cPin,LOW);

 if(order == LSBFIRST){

 digitalWrite(dPin,((0x01&(val>>i)) == 0x01) ? HIGH : LOW);

 delayMicroseconds(1);

http://www.freenove.com/
mailto:support@freenove.com

Chapter 18 74HC595 & 7-segment display. 192 www.freenove.com █

█ support@freenove.com

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

 }

 else {//if(order == MSBFIRST){

 digitalWrite(dPin,((0x80&(val<<i)) == 0x80) ? HIGH : LOW);

 delayMicroseconds(1);

 }

 digitalWrite(cPin,HIGH);

 delayMicroseconds(1);

 }

}

void outData(int8_t data){ //function used to output data for 74HC595

 digitalWrite(latchPin,LOW);

 _shiftOut(dataPin,clockPin,MSBFIRST,data);

 digitalWrite(latchPin,HIGH);

}

void display(int dec){ //display function for 7-segment display

 int delays = 1;

 outData(0xff);

 selectDigit(0x01); //select the first, and display the single digit

 outData(num[dec%10]);

 delay(delays); //display duration

 outData(0xff);

 selectDigit(0x02); //select the second, and display the tens digit

 outData(num[dec%100/10]);

 delay(delays);

 outData(0xff);

 selectDigit(0x04); //select the third, and display the hundreds digit

 outData(num[dec%1000/100]);

 delay(delays);

 outData(0xff);

 selectDigit(0x08); //select the fourth, and display the thousands digit

 outData(num[dec%10000/1000]);

 delay(delays);

}

void timer(int sig){ //Timer function

 if(sig == SIGALRM){ //If the signal is SIGALRM, the value of counter plus 1, and

update the number displayed by 7-segment display

 counter ++;

 alarm(1); //set the next timer time

 printf("counter : %d \n",counter);

 }

}

http://www.freenove.com/
mailto:support@freenove.com

193 Chapter 18 74HC595 & 7-segment display.

█ www.freenove.com

support@freenove.com █

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

int main(void)

{

 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen

 printf("setup wiringPi failed !");

 return 1;

 }

 pinMode(dataPin,OUTPUT); //set the pin connected to74HC595 for output mode

 pinMode(latchPin,OUTPUT);

 pinMode(clockPin,OUTPUT);

 //set the pin connected to 7-segment display common end to output mode

 for(i=0;i<4;i++){

 pinMode(digitPin[i],OUTPUT);

 digitalWrite(digitPin[i],HIGH);

 }

 signal(SIGALRM,timer); //configure the timer

 alarm(1); //set the time of timer to 1s

 while(1){

 display(counter); //display the number counter

 }

 return 0;

}

First, define the pin of 74HC595 and 7-segment display common end, character encoding and a variable

"counter" to be displayed counter.

 #define dataPin 5 //DS Pin of 74HC595(Pin14)

#define latchPin 4 //ST_CP Pin of 74HC595(Pin12)

#define clockPin 1 //CH_CP Pin of 74HC595(Pin11)

const int digitPin[]={0,2,3,12}; //Define the pin of 7-segment display common end

// character 0-9 code of common anode 7-segment display

unsigned char num[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};

int counter = 0; //variable counter, the number will be displayed by 7-segment display

Subfunction selectDigit (int digit) function is used to open one of the 7-segment display and close the other

7-segment display, where the parameter digit value can be 1,2,4,8. Using "|" can open a number of 7-segment

display.

 void selectDigit(int digit){

 digitalWrite(digitPin[0],((digit&0x08) == 0x08) ? LOW : HIGH);

 digitalWrite(digitPin[1],((digit&0x04) == 0x04) ? LOW : HIGH);

 digitalWrite(digitPin[2],((digit&0x02) == 0x02) ? LOW : HIGH);

 digitalWrite(digitPin[3],((digit&0x01) == 0x01) ? LOW : HIGH);

}

Subfunction outData (int8_t data) is used to make the 74HC595 output a 8-bit data immediately.

 void outData(int8_t data){ // function used to output data for 74HC595

 digitalWrite(latchPin,LOW);

 shiftOut(dataPin,clockPin,MSBFIRST,data);

http://www.freenove.com/
mailto:support@freenove.com

Chapter 18 74HC595 & 7-segment display. 194 www.freenove.com █

█ support@freenove.com

 digitalWrite(latchPin,HIGH);

}

Subfunction display (int dec) is used to make 4-Digit 7-segment display a 4-bit integer. First open the

common end of first 7-segment display and close to the other three, at this time, it can be used as 1-Digit 7-

segment display. The first is used for displaying single digit of "dec", the second for tens digit, third for

hundreds digit and fourth for thousands digit respectively. Each digit will be displayed for a period of time

through using delay (). The time in this code is set very short, so you will see different digit is in a mess. If the

time is set long enough, you will see that every digit is display independent.

 void display(int dec){ //display function for 7-segment display

 selectDigit(0x01); //select the first, and display the single digit

 outData(num[dec%10]);

 delay(1); //display duration

 selectDigit(0x02); //Select the second, and display the tens digit

 outData(num[dec%100/10]);

 delay(1);

 selectDigit(0x04); //Select the third, and display the hundreds digit

 outData(num[dec%1000/100]);

 delay(1);

 selectDigit(0x08); //Select the fourth, and display the thousands digit

 outData(num[dec%10000/1000]);

 delay(1);

}

Subfunction timer (int sig) is the timer function, wich will set a alarm signal. This function wil be ececuted once

at set intervals. Accompanied by the execution, the variable counter will be added 1, and then reset the time

of timer to 1s.

 void timer(int sig){ //timer function

 if(sig == SIGALRM){ //If the signal is SIGALRM, the value of counter plus 1, and

update the number displayed by 7-segment display

 counter ++;

 alarm(1); //set the next timer time

 }

}

Finally, in the main function, configure all the GPIO, and set the timer function.

 pinMode(dataPin,OUTPUT); //set the pin connected to74HC595 for output mode

 pinMode(latchPin,OUTPUT);

 pinMode(clockPin,OUTPUT);

 //set the pin connected to 7-segment display common end to output mode

 for(i=0;i<4;i++){

 pinMode(digitPin[i],OUTPUT);

 digitalWrite(digitPin[i],LOW);

 }

 signal(SIGALRM,timer); //configure the timer

 alarm(1); //set the time of timer to 1s

In the while cycle, make the digital display variable counter value. The value will change in function timer (),

http://www.freenove.com/
mailto:support@freenove.com

195 Chapter 18 74HC595 & 7-segment display.

█ www.freenove.com

support@freenove.com █

so the content displayed by 7-segment display will change accordingly.

 while(1){

 display(counter); //display number counter

 }

http://www.freenove.com/
mailto:support@freenove.com

Chapter 18 74HC595 & 7-segment display. 196 www.freenove.com █

█ support@freenove.com

Python Code 18.2.1 StopWatch

This code use four step four pat mode to drive the stepping motor forward and reverse direction.

1. Use cd command to enter 16.1.1_SteppingMotor directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/18.2.1_StopWatch

2. Use python command to execute code "StopWatch.py".

python StopWatch.py

After the program is executed, 4-Digit 7-segment start displaying a four-digit number dynamically, and the

will plus 1 in each successive second.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

import RPi.GPIO as GPIO

import time

import threading

LSBFIRST = 1

MSBFIRST = 2

#define the pins connect to 74HC595

dataPin = 18 #DS Pin of 74HC595(Pin14)

latchPin = 16 #ST_CP Pin of 74HC595(Pin12)

clockPin = 12 #SH_CP Pin of 74HC595(Pin11)

num = (0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90)

digitPin = (11,13,15,19) # Define the pin of 7-segment display common end

counter = 0 # Variable counter, the number will be dislayed by 7-segment display

t = 0 # define the Timer object

def setup():

 GPIO.setmode(GPIO.BOARD) # Number GPIOs by its physical location

 GPIO.setup(dataPin, GPIO.OUT) # Set pin mode to output

 GPIO.setup(latchPin, GPIO.OUT)

 GPIO.setup(clockPin, GPIO.OUT)

 for pin in digitPin:

 GPIO.setup(pin,GPIO.OUT)

def shiftOut(dPin,cPin,order,val):

 for i in range(0,8):

 GPIO.output(cPin,GPIO.LOW);

 if(order == LSBFIRST):

 GPIO.output(dPin,(0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)

 elif(order == MSBFIRST):

 GPIO.output(dPin,(0x80&(val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)

 GPIO.output(cPin,GPIO.HIGH)

def outData(data): #function used to output data for 74HC595

 GPIO.output(latchPin,GPIO.LOW)

http://www.freenove.com/
mailto:support@freenove.com

197 Chapter 18 74HC595 & 7-segment display.

█ www.freenove.com

support@freenove.com █

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

 shiftOut(dataPin,clockPin,MSBFIRST,data)

 GPIO.output(latchPin,GPIO.HIGH)

def selectDigit(digit): # Open one of the 7-segment display and close the remaining

three, the parameter digit is optional for 1,2,4,8

 GPIO.output(digitPin[0],GPIO.LOW if ((digit&0x08) == 0x08) else GPIO.HIGH)

 GPIO.output(digitPin[1],GPIO.LOW if ((digit&0x04) == 0x04) else GPIO.HIGH)

 GPIO.output(digitPin[2],GPIO.LOW if ((digit&0x02) == 0x02) else GPIO.HIGH)

 GPIO.output(digitPin[3],GPIO.LOW if ((digit&0x01) == 0x01) else GPIO.HIGH)

def display(dec): #display function for 7-segment display

 outData(0xff) #eliminate residual display

 selectDigit(0x01) #Select the first, and display the single digit

 outData(num[dec%10])

 time.sleep(0.003) #display duration

 outData(0xff)

 selectDigit(0x02) # Select the second, and display the tens digit

 outData(num[dec%100//10])

 time.sleep(0.003)

 outData(0xff)

 selectDigit(0x04) # Select the third, and display the hundreds digit

 outData(num[dec%1000//100])

 time.sleep(0.003)

 outData(0xff)

 selectDigit(0x08) # Select the fourth, and display the thousands digit

 outData(num[dec%10000//1000])

 time.sleep(0.003)

def timer(): #timer function

 global counter

 global t

 t = threading.Timer(1.0,timer) #reset time of timer to 1s

 t.start() #Start timing

 counter+=1

 print ("counter : %d"%counter)

def loop():

 global t

 global counter

 t = threading.Timer(1.0,timer) #set the timer

 t.start() # Start timing

 while True:

 display(counter) # display the number counter

def destroy(): # When "Ctrl+C" is pressed, the function is executed.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 18 74HC595 & 7-segment display. 198 www.freenove.com █

█ support@freenove.com

78

79

80

81

82

83

84

85

86

87

89

 global t

 GPIO.cleanup()

 t.cancel() #cancel the timer

if __name__ == '__main__': # Program starting from here

 print ('Program is starting...')

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

First, define the pin of 74HC595 and 7-segment display common end, character encoding and a variable

"counter" to be displayed counter.

 dataPin = 18 #DS Pin of 74HC595(Pin14)

latchPin = 16 #ST_CP Pin of 74HC595(Pin12)

clockPin = 12 #CH_CP Pin of 74HC595(Pin11)

num = (0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90)

digitPin = (11,13,15,19) # Define the pin of 7-segment display common end

counter = 0 # Variable counter, the number will be displayed by 7-segment display

Subfunction selectDigit (digit) function is used to open one of the 7-segment display and close the other 7-

segment display, where the parameter digit value can be 1,2,4,8. Using "|" can open a number of 7-segment

display.

 def selectDigit(digit): #Open one of the 7-segment display and close the remaining three,

the parameter digit is optional for 1,2,4,8

 GPIO.output(digitPin[0],GPIO.LOW if ((digit&0x08) == 0x08) else GPIO.HIGH)

 GPIO.output(digitPin[1],GPIO.LOW if ((digit&0x04) == 0x04) else GPIO.HIGH)

 GPIO.output(digitPin[2],GPIO.LOW if ((digit&0x02) == 0x02) else GPIO.HIGH)

 GPIO.output(digitPin[3],GPIO.LOW if ((digit&0x01) == 0x01) else GPIO.HIGH)

Subfunction outData (data) is used to make the 74HC595 output a 8-bit data immediately.

 def outData(data): #function used to output data for 74HC595

 GPIO.output(latchPin,GPIO.LOW)

 shiftOut(dataPin,clockPin,MSBFIRST,data)

 GPIO.output(latchPin,GPIO.HIGH)

Subfunction display (dec) is used to make 4-Digit 7-segment display a 4-bit integer. First open the common

end of first 7-segment display and close to the other three, at this time, it can be used as 1-Digit 7-segment

display. The first is used for displaying single digit of "dec", the second for tens digit, third for hundreds digit

and fourth for thousands digit respectively. Each digit will be displayed for a period of time through using

delay (). The time in this code is set very short, so you will see different digit is in a mess. If the time is set long

enough, you will see that every digit is display independent.

 def display(dec): #display function for 7-segment display

 outData(0xff) #eliminate residual display

 selectDigit(0x01) #Select the first, and display the single digit

 outData(num[dec%10])

 time.sleep(0.003) #display duration

http://www.freenove.com/
mailto:support@freenove.com

199 Chapter 18 74HC595 & 7-segment display.

█ www.freenove.com

support@freenove.com █

 outData(0xff)

 selectDigit(0x02) #Select the second, and display the tens digit

 outData(num[dec%100/10])

 time.sleep(0.003)

 outData(0xff)

 selectDigit(0x04) #Select the third, and display the hundreds digit

 outData(num[dec%1000/100])

 time.sleep(0.003)

 outData(0xff)

 selectDigit(0x08) #Select the fourth, and display the thousands digit

 outData(num[dec%10000/1000])

 time.sleep(0.003)

Subfunction timer () is the timer callback function. When the time is up, this function will be executed.

Accompanied by the execution, the variable counter will be added 1, and then reset the time of timer to 1s.

1s later, the function will be executed again.

 def timer(): #timer function

 global counter

 global t

 t = threading.Timer(1.0,timer) #reset time of timer to 1s

 t.start() #Start timing

 counter+=1

 print ("counter : %d"%counter)

Subfunction setup(), configure all input output modes for the GPIO pin used.

Finally, in loop function, make the digital tube display variable counter value in the while cycle. The value will

change in function timer (), so the content displayed by 7-segment display will change accordingly.

 def loop():

 global t

 global counter

 t = threading.Timer(1.0,timer) # set the timer

 t.start() #Start timing

 while True:

 display(counter) #display the number counter

After the program is executed, press "Ctrl+C", then subfunction destroy() will be executed, and GPIO resources

and timers will be released in this subfunction.

 def destroy(): # When 'Ctrl+C' is pressed, the function is executed.

 global t

 GPIO.cleanup()

 t.cancel() # cancel the timer

http://www.freenove.com/
mailto:support@freenove.com

Chapter 19 74HC595 & LED Matrix 200 www.freenove.com █

█ support@freenove.com

Chapter 19 74HC595 & LED Matrix

We have learned how to use 74HC595 to control LEDBar Graph and Seven-SegmentDisplay. And we will

continue to use the 74HC595 to control more LED, LEDMatrix.

Project 19.1 LED Matrix

In this project, we will use two 74HC595 to control a monochrome LEDMatrix (8*8) to make it display some

graphics and characters.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

74HC595 x2

8*8 LEDMatrix x1

Resistor 220Ω x8

http://www.freenove.com/
mailto:support@freenove.com

201 Chapter 19 74HC595 & LED Matrix

█ www.freenove.com

support@freenove.com █

Component knowledge

LED matrix

LED matrix is a rectangular display module that consists of several LEDs. The following is an 8*8 monochrome

LED matrix with 64 LEDs (8 rows and 8 columns).

In order to facilitate the operation and save the ports, positive pole of LEDs in each row and negative pole of

LEDs in each column are respectively connected together inside LED matrix module, which is called Common

Anode. There is another form. Negative pole of LEDs in each row and positive pole of LEDs in each column

are respectively connected together, which is called Common Cathode.

The one we use in this project is a common anode LEDMatrix.

Connection mode of common anode Connection mode of common cathode

http://www.freenove.com/
mailto:support@freenove.com

Chapter 19 74HC595 & LED Matrix 202 www.freenove.com █

█ support@freenove.com

Let us learn how connection mode of common anode works. Choose 16 ports on RPI board to connect to the

16 ports of LED Matrix. Configured one port in columns for low level, which make the column of the port

selected. Then configure the eight ports in row to display content in the selected column. Delay for a moment.

And then select the next column and outputs the corresponding content. This kind of operation to column is

called scan. If you want to display the following image of a smiling face, you can display it in 8 columns, and

each column is represented by one byte.

Column Binary Hexadecimal

1 0001 1100 0x1c

2 0010 0010 0x22

3 0101 0001 0x51

4 0100 0101 0x45

5 0100 0101 0x45

6 0101 0001 0x51

7 0010 0010 0x22

8 0001 1100 0x1c

First, display the first column, then turn off the first column and display the second column...... turn off the

seventh column and display the 8th column, and then start from the first column again like the control of

Graph LEDBar. The whole progress will be repeated rapidly and circularly. Due to afterglow effect of LED and

visual residual effect of human eyes, we will see a picture of a smiling face directly rather than LED are turned

on one column by one column (although in fact it is the real situation).

Scanning rows is another display way of dot matrix. Whether scanning line or column, 16 GPIO are required.

In order to save GPIO of control board, two 74HC595 is used. Every piece of 74HC595 has eight parallel output

ports, so two pieces has 16 ports in total, just enough. The control line and data line of two 74HC595 are not

all connected to the RPi, but connect Q7 pin of first stage 74HC595 to data pin of second one, namely, two

74HC595 are connected in series. It is the same to using one "74HC595" with 16 parallel output ports.

 1 2 3 4 5 6 7 8

 0 0 0 0 0 0 0 0

 0 0 1 1 1 1 0 0

 0 1 0 0 0 0 1 0

 1 0 1 0 0 1 0 1

 1 0 0 0 0 0 0 1

 1 0 0 1 1 0 0 1

 0 1 0 0 0 0 1 0

 0 0 1 1 1 1 0 0

http://www.freenove.com/
mailto:support@freenove.com

203 Chapter 19 74HC595 & LED Matrix

█ www.freenove.com

support@freenove.com █

Circuit

In this project circuit, the power pin of 74HC595 is connected to 3.3V. It can also be connected to 5V to make

LEDMatrix brighter.

Schematic diagram

http://www.freenove.com/
mailto:support@freenove.com

Chapter 19 74HC595 & LED Matrix 204 www.freenove.com █

█ support@freenove.com

Hardware connection

Second stage

74HC595：B

First stage

74HC595：A

http://www.freenove.com/
mailto:support@freenove.com

205 Chapter 19 74HC595 & LED Matrix

█ www.freenove.com

support@freenove.com █

Code

Two 74HC595 are used in this project used, one for controlling columns of LEDMatrix, another for lines. And

two 74HC595 are connected in cascade way (series) and has 16 output port. Because shiftOut () function

output 8-bit data once, twice shiftOut () function are required and data of second stage 74HC595 should be

transmitted preferentially. There are two 74HC595 in this project circuit, A (first stage) and B (second stage).

When the RPi uses shiftOut() function to send data "data1", data of A port will be "data1", and data of B will

be 0. Next, use shiftOut() to send "data2", then data "data1" of A will be moved to B and new data "data2"

will be moved to A. According to the circuit connection, line data should be sent first, then send column data.

The following code will make LEDMatrix display a smiling face, and then display scrolling character "0-F".

C Code 19.1.1 LEDMatrix

First observe the project result, and then analyze the code.

1. Use cd command to enter 19.1.1_LEDMatrix directory of C language.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/19.1.1_LEDMatrix

2. Use following command to compile “LEDMatrix.c” and generate executable file “LEDMatrix”.

gcc LEDMatrix.c –o LEDMatrix –lwiringPi

3. Then run the generated file “LEDMatrix”.

sudo ./LEDMatrix

After the program is executed, LEDMatrix will display a smiling face, and then the display scrolling character

"0-F", circularly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

#include <wiringPi.h>

#include <stdio.h>

#include <wiringShift.h>

#define dataPin 0 //DS Pin of 74HC595(Pin14)

#define latchPin 2 //ST_CP Pin of 74HC595(Pin12)

#define clockPin 3 //SH_CP Pin of 74HC595(Pin11)

// data of smiling face

unsigned char pic[]={0x1c,0x22,0x51,0x45,0x45,0x51,0x22,0x1c};

unsigned char data[]={ // data of "0-F"

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // " "

 0x00, 0x00, 0x3E, 0x41, 0x41, 0x3E, 0x00, 0x00, // "0"

 0x00, 0x00, 0x21, 0x7F, 0x01, 0x00, 0x00, 0x00, // "1"

 0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00, // "2"

 0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00, // "3"

 0x00, 0x00, 0x0E, 0x32, 0x7F, 0x02, 0x00, 0x00, // "4"

 0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00, // "5"

 0x00, 0x00, 0x3E, 0x49, 0x49, 0x26, 0x00, 0x00, // "6"

 0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00, // "7"

 0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00, // "8"

 0x00, 0x00, 0x32, 0x49, 0x49, 0x3E, 0x00, 0x00, // "9"

 0x00, 0x00, 0x3F, 0x44, 0x44, 0x3F, 0x00, 0x00, // "A"

http://www.freenove.com/
mailto:support@freenove.com

Chapter 19 74HC595 & LED Matrix 206 www.freenove.com █

█ support@freenove.com

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

 0x00, 0x00, 0x7F, 0x49, 0x49, 0x36, 0x00, 0x00, // "B"

 0x00, 0x00, 0x3E, 0x41, 0x41, 0x22, 0x00, 0x00, // "C"

 0x00, 0x00, 0x7F, 0x41, 0x41, 0x3E, 0x00, 0x00, // "D"

 0x00, 0x00, 0x7F, 0x49, 0x49, 0x41, 0x00, 0x00, // "E"

 0x00, 0x00, 0x7F, 0x48, 0x48, 0x40, 0x00, 0x00, // "F"

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // " "

};

void _shiftOut(int dPin,int cPin,int order,int val){

 int i;

 for(i = 0; i < 8; i++){

 digitalWrite(cPin,LOW);

 if(order == LSBFIRST){

 digitalWrite(dPin,((0x01&(val>>i)) == 0x01) ? HIGH : LOW);

 delayMicroseconds(10);

 }

 else {//if(order == MSBFIRST){

 digitalWrite(dPin,((0x80&(val<<i)) == 0x80) ? HIGH : LOW);

 delayMicroseconds(10);

 }

 digitalWrite(cPin,HIGH);

 delayMicroseconds(10);

 }

}

int main(void)

{

 int i,j,k;

 unsigned char x;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen

 printf("setup wiringPi failed !");

 return 1;

 }

 pinMode(dataPin,OUTPUT);

 pinMode(latchPin,OUTPUT);

 pinMode(clockPin,OUTPUT);

 while(1){

 for(j=0;j<500;j++){// Repeat enough times to display the smiling face a period of

time

 x=0x80;

 for(i=0;i<8;i++){

 digitalWrite(latchPin,LOW);

 _shiftOut(dataPin,clockPin,MSBFIRST,pic[i]);// first shift data of line

information to the first stage 74HC959

 _shiftOut(dataPin,clockPin,MSBFIRST,~x);//then shift data of column

information to the second stage 74HC959

http://www.freenove.com/
mailto:support@freenove.com

207 Chapter 19 74HC595 & LED Matrix

█ www.freenove.com

support@freenove.com █

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

 digitalWrite(latchPin,HIGH);//Output data of two stage 74HC595 at the

same time

 x>>=1;// display the next column

 delay(1);

 }

 }

 for(k=0;k<sizeof(data)-8;k++){ //sizeof(data) total number of "0-F" columns

 for(j=0;j<20;j++){// times of repeated displaying LEDMatrix in every frame,

the bigger the “j”, the longer the display time

 x=0x80; // Set the column information to start from the first column

 for(i=k;i<8+k;i++){

 digitalWrite(latchPin,LOW);

 _shiftOut(dataPin,clockPin,MSBFIRST,data[i]);

 _shiftOut(dataPin,clockPin,MSBFIRST,~x);

 digitalWrite(latchPin,HIGH);

 x>>=1;

 delay(1);

 }

 }

 }

 }

 return 0;

}

The first “for” cycle in the “while” cycle is used to display a static smile. Display column information from left

to right, one column by one column, totally 8 columns. Repeat 500 times to ensure display time enough.

 for(j=0;j<500;j++){// Repeat enough times to display the smiling face a period

of time

 x=0x80;

 for(i=0;i<8;i++){

 digitalWrite(latchPin,LOW);

 shiftOut(dataPin,clockPin,MSBFIRST,pic[i]);

 shiftOut(dataPin,clockPin,MSBFIRST,~x);

 digitalWrite(latchPin,HIGH);

 x>>=1;

 delay(1);

 }

 }

The second “for” cycle is used to display scrolling characters "0-F", totally 18*8=144 columns. Display the 0-

8 column, 1-9 column, 2-10 column...... 138-144 column in turn to achieve scrolling effect. The display of

each frame is repeated a certain number of times, and the more times the number of repetitions, the longer

the single frame display, the slower the rolling.

 for(k=0;k<sizeof(data)-8;k++){ //sizeof(data) total number of "0-F" columns

http://www.freenove.com/
mailto:support@freenove.com

Chapter 19 74HC595 & LED Matrix 208 www.freenove.com █

█ support@freenove.com

 for(j=0;j<20;j++){// times of repeated displaying LEDMatrix in every frame,

the bigger the “j”, the longer the display time

 x=0x80; // Set the column information to start from the first column

 for(i=k;i<8+k;i++){

 digitalWrite(latchPin,LOW);

 shiftOut(dataPin,clockPin,MSBFIRST,data[i]);

 shiftOut(dataPin,clockPin,MSBFIRST,~x);

 digitalWrite(latchPin,HIGH);

 x>>=1;

 delay(1);

 }

 }

 }

http://www.freenove.com/
mailto:support@freenove.com

209 Chapter 19 74HC595 & LED Matrix

█ www.freenove.com

support@freenove.com █

Python Code 19.1.1 LEDMatrix

First observe the project result, and then analyze the code.

1. Use cd command to enter 19.1.1_LEDMatrix directory of Python language.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/19.1.1_LEDMatrix

2. Use python command to execute python code “LEDMatrix.py”.

python LEDMatrix.py

After the program is executed, LEDMatrix will display a smiling face, and then the display scrolling character

"0-F", circularly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

import RPi.GPIO as GPIO

import time

LSBFIRST = 1

MSBFIRST = 2

#define the pins connect to 74HC595

dataPin = 11 #DS Pin of 74HC595(Pin14)

latchPin = 13 #ST_CP Pin of 74HC595(Pin12)

clockPin = 15 #SH_CP Pin of 74HC595(Pin11)

pic = [0x1c,0x22,0x51,0x45,0x45,0x51,0x22,0x1c]# data of smiling face

data = [#data of "0-F"

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # " "

 0x00, 0x00, 0x3E, 0x41, 0x41, 0x3E, 0x00, 0x00, # "0"

 0x00, 0x00, 0x21, 0x7F, 0x01, 0x00, 0x00, 0x00, # "1"

 0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00, # "2"

 0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00, # "3"

 0x00, 0x00, 0x0E, 0x32, 0x7F, 0x02, 0x00, 0x00, # "4"

 0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00, # "5"

 0x00, 0x00, 0x3E, 0x49, 0x49, 0x26, 0x00, 0x00, # "6"

 0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00, # "7"

 0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00, # "8"

 0x00, 0x00, 0x32, 0x49, 0x49, 0x3E, 0x00, 0x00, # "9"

 0x00, 0x00, 0x3F, 0x44, 0x44, 0x3F, 0x00, 0x00, # "A"

 0x00, 0x00, 0x7F, 0x49, 0x49, 0x36, 0x00, 0x00, # "B"

 0x00, 0x00, 0x3E, 0x41, 0x41, 0x22, 0x00, 0x00, # "C"

 0x00, 0x00, 0x7F, 0x41, 0x41, 0x3E, 0x00, 0x00, # "D"

 0x00, 0x00, 0x7F, 0x49, 0x49, 0x41, 0x00, 0x00, # "E"

 0x00, 0x00, 0x7F, 0x48, 0x48, 0x40, 0x00, 0x00, # "F"

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # " "

]

def setup():

 GPIO.setmode(GPIO.BOARD) # Number GPIOs by its physical location

 GPIO.setup(dataPin, GPIO.OUT)

 GPIO.setup(latchPin, GPIO.OUT)

 GPIO.setup(clockPin, GPIO.OUT)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 19 74HC595 & LED Matrix 210 www.freenove.com █

█ support@freenove.com

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

def shiftOut(dPin,cPin,order,val):

 for i in range(0,8):

 GPIO.output(cPin,GPIO.LOW);

 if(order == LSBFIRST):

 GPIO.output(dPin,(0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)

 elif(order == MSBFIRST):

 GPIO.output(dPin,(0x80&(val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)

 GPIO.output(cPin,GPIO.HIGH);

def loop():

 while True:

 for j in range(0,500):# Repeat enough times to display the smiling face a period

of time

 x=0x80

 for i in range(0,8):

 GPIO.output(latchPin,GPIO.LOW)

 shiftOut(dataPin,clockPin,MSBFIRST,pic[i]) #first shift data of line

information to first stage 74HC959

 shiftOut(dataPin,clockPin,MSBFIRST,~x) #then shift data of column

information to second stage 74HC959

 GPIO.output(latchPin,GPIO.HIGH)# Output data of two stage 74HC595 at the

same time

 time.sleep(0.001)# display the next column

 x>>=1

 for k in range(0,len(data)-8):#len(data) total number of "0-F" columns

 for j in range(0,20):# times of repeated displaying LEDMatrix in every frame,

the bigger the "j", the longer the display time.

 x=0x80 # Set the column information to start from the first column

 for i in range(k,k+8):

 GPIO.output(latchPin,GPIO.LOW)

 shiftOut(dataPin,clockPin,MSBFIRST,data[i])

 shiftOut(dataPin,clockPin,MSBFIRST,~x)

 GPIO.output(latchPin,GPIO.HIGH)

 time.sleep(0.001)

 x>>=1

def destroy(): # When 'Ctrl+C' is pressed, the function is executed.

 GPIO.cleanup()

if __name__ == '__main__': # Program starting from here

 print ('Program is starting...')

 setup()

 try:

 loop()

http://www.freenove.com/
mailto:support@freenove.com

211 Chapter 19 74HC595 & LED Matrix

█ www.freenove.com

support@freenove.com █

80

81

 except KeyboardInterrupt:

 destroy()

The first “for” cycle in the “while” cycle is used to display a static smile. Display column information from left

to right, one column by one column, totally 8 columns. Repeat 500 times to ensure display time enough.

 for j in range(0,500):# Repeat enough times to display the smiling face a period

of time

 x=0x80

 for i in range(0,8):

 GPIO.output(latchPin,GPIO.LOW)

 shiftOut(dataPin,clockPin,MSBFIRST,pic[i])#first shift data of line

information to first stage 74HC959

 shiftOut(dataPin,clockPin,MSBFIRST,~x)#then shift data of column

information to first stage 74HC959

 GPIO.output(latchPin,GPIO.HIGH)# Output data of two stage 74HC595 at the

same time.

 time.sleep(0.001)# display the next column

 x>>=1

The second “for” cycle is used to display scrolling characters "0-F", totally 18*8=144 columns. Display the 0-

8 column, 1-9 column, 2-10 column...... 138-144 column in turn to achieve scrolling effect. The display of

each frame is repeated a certain number of times, and the more times the number of repetitions, the longer

the single frame display, the slower the rolling.

 for k in range(0,len(data)-8):#len(data) total number of “O-F” columns.

 for j in range(0,20):# times of repeated displaying LEDMatrix in every frame,

the bigger the “j”, the longer the display time

 x=0x80 # Set the column information to start from the first column

 for i in range(k,k+8):

 GPIO.output(latchPin,GPIO.LOW)

 shiftOut(dataPin,clockPin,MSBFIRST,data[i])

 shiftOut(dataPin,clockPin,MSBFIRST,~x)

 GPIO.output(latchPin,GPIO.HIGH)

 time.sleep(0.001)

 x>>=1

http://www.freenove.com/
mailto:support@freenove.com

Chapter 20 LCD1602 212 www.freenove.com █

█ support@freenove.com

Chapter 20 LCD1602

In this chapter, we will learn a display screen, LCD1602.

Project 20.1 I2C LCD1602

LCD1602 can display 2 lines of characters in 16 columns. It can display numbers, letters, symbols, ASCII code

and so on. As shown below is a monochrome LCD1602 display screen，and its circuit pin diagram：

I2C LCD1602 integrates a I2C interface, which connects the serial-input ¶llel-output module to LCD1602.

We just use 4 lines to the operate LCD1602 easily.

The serial-to-parallel chip used in this module is PCF8574(PCF8574A), and its default I2C address is 0x27(0x3F),

and you can view all the RPI bus on your I2C device address through command "i2cdetect –y 1" to. (refer to

the "configuration I2C" section below) below is the PCF8574 pin schematic diagram and the block pin diagram:

PCF8574 chip pin diagram:

PCF8574 module pin diagram

PCF8574 module pin and LCD1602 pin are corresponding to each other and connected with each other:

http://www.freenove.com/
mailto:support@freenove.com

213 Chapter 20 LCD1602

█ www.freenove.com

support@freenove.com █

So, we can use just 4 pins to control LCD1602 with 16 pins easily through I2C interface.

In this project, we will use I2CLCD1602 to display some static characters and dynamic variables.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Jumper

I2C LCD1602 Module x1

http://www.freenove.com/
mailto:support@freenove.com

Chapter 20 LCD1602 214 www.freenove.com █

█ support@freenove.com

Circuit

Note that the power supply for I2CLCD1602 in this circuit is 5V.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

215 Chapter 20 LCD1602

█ www.freenove.com

support@freenove.com █

Code

This code will get the CPU temperature and system time of RPi, display them on LCD1602.

C Code 20.1.1 I2CLCD1602

First observe the project result, and then analyze the code.

1. Use cd command to enter 20.1.1_ I2CLCD1602 directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/20.1.1_I2CLCD1602

2. Open the file I2CLCD1602.c, and find the macro definition "pcf8574_address". If your serial-to-parallel

module uses chip PCF8574, set the macro "pcf8574_address" value to 0x27.If your serial-to-parallel

module uses chip PCF8574A, set the macro "pcf8574_address" value to 0x3F.

3. Use following command to compile “I2CLCD1602.c” and generate executable file “I2CLCD1602”.

gcc I2CLCD1602.c –o I2CLCD1602 –lwiringPi –lwiringPiDev

4. Then run the generated file “I2CLCD1602”.

sudo ./ I2CLCD1602

After the program is executed, LCD1602 screen will display current CPU temperature and system time. If there

is no display or the display is not clear, adjust potentiometer of PCF8574 module to adjust the contrast of

LCD1602 until the screen can display clearly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#include <stdlib.h>

#include <stdio.h>

#include <wiringPi.h>

#include <pcf8574.h>

#include <lcd.h>

#include <time.h>

//#define pcf8574_address 0x27 // default I2C address of Pcf8574

#define pcf8574_address 0x3F // default I2C address of Pcf8574A

#define BASE 64 // BASE is not less than 64

//////// Define the output pins of the PCF8574, which are directly connected to the

LCD1602 pin.

#define RS BASE+0

#define RW BASE+1

#define EN BASE+2

#define LED BASE+3

#define D4 BASE+4

#define D5 BASE+5

#define D6 BASE+6

#define D7 BASE+7

int lcdhd;// used to handle LCD

void printCPUTemperature(){// subfunction used to print CPU temperature

http://www.freenove.com/
mailto:support@freenove.com

Chapter 20 LCD1602 216 www.freenove.com █

█ support@freenove.com

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

 FILE *fp;

 char str_temp[15];

 float CPU_temp;

 // CPU temperature data is stored in this directory.

 fp=fopen("/sys/class/thermal/thermal_zone0/temp","r");

 fgets(str_temp,15,fp); // read file temp

 CPU_temp = atof(str_temp)/1000.0; // convert to Celsius degrees

 printf("CPU's temperature : %.2f \n",CPU_temp);

 lcdPosition(lcdhd,0,0); // set the LCD cursor position to (0,0)

 lcdPrintf(lcdhd,"CPU:%.2fC",CPU_temp);// Display CPU temperature on LCD

 fclose(fp);

}

void printDataTime(){//used to print system time

 time_t rawtime;

 struct tm *timeinfo;

 time(&rawtime);// get system time

 timeinfo = localtime(&rawtime);// convert to local time

 printf("%s \n",asctime(timeinfo));

 lcdPosition(lcdhd,0,1);// set the LCD cursor position to (0,1)

 lcdPrintf(lcdhd,"Time:%d:%d:%d",timeinfo->tm_hour,timeinfo->tm_min,timeinfo->tm_sec);

//Display system time on LCD

}

int main(void){

 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 pcf8574Setup(BASE,pcf8574_address);// initialize PCF8574

 for(i=0;i<8;i++){

 pinMode(BASE+i,OUTPUT); // set PCF8574 port to output mode

 }

 digitalWrite(LED,HIGH); // turn on LCD backlight

 digitalWrite(RW,LOW); // allow writing to LCD

lcdhd = lcdInit(2,16,4,RS,EN,D4,D5,D6,D7,0,0,0,0);// initialize LCD and return “handle”

used to handle LCD

 if(lcdhd == -1){

 printf("lcdInit failed !");

 return 1;

 }

 while(1){

 printCPUTemperature();// print CPU temperature

 printDataTime(); // print system time

http://www.freenove.com/
mailto:support@freenove.com

217 Chapter 20 LCD1602

█ www.freenove.com

support@freenove.com █

68

69

70

 delay(1000);

 }

 return 0;

}

It can be seen from the code that PCF8591 and PCF8574 have a lot of similarities, they are through the I2C

interface to expand the GPIO RPI. First defines the I2C address of the PCF8574 and the Extension of the GPIO

pin, which is connected to the GPIO pin of the LCD1602.

 //#define pcf8574_address 0x27 // default I2C address of Pcf8574

#define pcf8574_address 0x3F // default I2C address of Pcf8574A

#define BASE 64 // BASE is not less than 64

//////// Define the output pins of the PCF8574, which are directly connected to the

LCD1602 pin.

#define RS BASE+0

#define RW BASE+1

#define EN BASE+2

#define LED BASE+3

#define D4 BASE+4

#define D5 BASE+5

#define D6 BASE+6

#define D7 BASE+7

Then, in main function, initialize the PCF8574, set all the pins to output mode, and turn on the LCD1602

backlight.

 pcf8574Setup(BASE,pcf8574_address);// initialize PCF8574

 for(i=0;i<8;i++){

 pinMode(BASE+i,OUTPUT); // set PCF8574 port to output mode

 }

 digitalWrite(LED,HIGH); // turn on LCD backlight

Then use lcdInit() to initialize LCD1602 and set the RW pin of LCD1602 to 0 (namely, can be write) according

to requirements of this function. The return value of the function called "Handle" is used to handle LCD1602"

next.

 lcdhd = lcdInit(2,16,4,RS,EN,D4,D5,D6,D7,0,0,0,0);// initialize LCD and return

“handle” used to handle LCD

Details about lcdInit()：

int lcdInit (int rows, int cols, int bits, int rs, int strb,

 int d0, int d1, int d2, int d3, int d4, int d5, int d6, int d7) ;

This is the main initialization function and must be called before you use any other LCD functions.

Rows and cols are the rows and columns on the display (e.g. 2, 16 or 4,20). Bits is the number of bits wide

on the interface (4 or 8). The rs and strb represent the pin numbers of the displays RS pin and Strobe (E)

pin. The parameters d0 through d7 are the pin numbers of the 8 data pins connected from the Pi to the

display. Only the first 4 are used if you are running the display in 4-bit mode.

The return value is the ‘handle’ to be used for all subsequent calls to the lcd library when dealing with that

LCD, or -1 to indicate a fault. (Usually incorrect parameters)

For more details about LCD Library, please refer to: https://projects.drogon.net/raspberry-pi/wiringpi/lcd-

library/

http://www.freenove.com/
mailto:support@freenove.com
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/

Chapter 20 LCD1602 218 www.freenove.com █

█ support@freenove.com

In the next “while”, two subfunctions are called to display the CPU temperature and the time. First look at

subfunction printCPUTemperature(). The CPU temperature data is stored in the

"/sys/class/thermal/thermal_zone0/temp " file. We need read contents of the file, and converts it to

temperature value stored in variable CPU_temp, and use lcdPrintf() to display it on LCD.

 void printCPUTemperature(){//subfunction used to print CPU temperature

 FILE *fp;

 char str_temp[15];

 float CPU_temp;

 // CPU temperature data is stored in this directory.

 fp=fopen("/sys/class/thermal/thermal_zone0/temp","r");

 fgets(str_temp,15,fp); // read file temp

 CPU_temp = atof(str_temp)/1000.0; // convert to Celsius degrees

 printf("CPU's temperature : %.2f \n",CPU_temp);

 lcdPosition(lcdhd,0,0); // set the LCD cursor position to (0,0)

 lcdPrintf(lcdhd,"CPU:%.2fC",CPU_temp);// Display CPU temperature on LCD

 fclose(fp);

}

Details about lcdPosition() and lcdPrintf():

lcdPosition (int handle, int x, int y);

 Set the position of the cursor for subsequent text entry.

lcdPutchar (int handle, uint8_t data)

lcdPuts (int handle, char *string)

lcdPrintf (int handle, char *message, …)

 These output a single ASCII character, a string or a formatted string using the usual printf formatting

commands.

Next is subfunction printDataTime() used to print system time. First, got the standard time and store it into

variable rawtime, and then converted it to the local time and tore it into timeinfo, and finally display the time

information on LCD1602.

 void printDataTime(){//used to print system time

 time_t rawtime;

 struct tm *timeinfo;

 time(&rawtime);// get system time

 timeinfo = localtime(&rawtime);// convert to local time

 printf("%s \n",asctime(timeinfo));

 lcdPosition(lcdhd,0,1);// set the LCD cursor position to (0,1)

 lcdPrintf(lcdhd,"Time:%d:%d:%d",timeinfo->tm_hour,timeinfo->tm_min,timeinfo->tm_sec);

//Display system time on LCD

}

http://www.freenove.com/
mailto:support@freenove.com

219 Chapter 20 LCD1602

█ www.freenove.com

support@freenove.com █

Python Code 20.1.1 I2CLCD1602

First observe the project result, and then analyze the code.

1. Use cd command to enter 20.1.1_ I2CLCD1602 directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/20.1.1_I2CLCD1602

2. Use python command to execute python code “I2CLCD1602.py”.

python I2CLCD1602.py

After the program is executed, LCD1602 screen will display current CPU temperature and system time. If there

is no display or the display is not clear, adjust potentiometer of PCF8574 module to adjust the contrast of

LCD1602 until the screen can display clearly.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

from PCF8574 import PCF8574_GPIO

from Adafruit_LCD1602 import Adafruit_CharLCD

from time import sleep, strftime

from datetime import datetime

def get_cpu_temp(): # get CPU temperature and store it into file

"/sys/class/thermal/thermal_zone0/temp"

 tmp = open('/sys/class/thermal/thermal_zone0/temp')

 cpu = tmp.read()

 tmp.close()

 return '{:.2f}'.format(float(cpu)/1000) + ' C'

def get_time_now(): # get system time

 return datetime.now().strftime(' %H:%M:%S')

def loop():

 mcp.output(3,1) # turn on LCD backlight

 lcd.begin(16,2) # set number of LCD lines and columns

 while(True):

 #lcd.clear()

 lcd.setCursor(0,0) # set cursor position

 lcd.message('CPU: ' + get_cpu_temp()+'\n')# display CPU temperature

 lcd.message(get_time_now()) # display the time

 sleep(1)

def destroy():

 lcd.clear()

PCF8574_address = 0x27 # I2C address of the PCF8574 chip.

PCF8574A_address = 0x3F # I2C address of the PCF8574A chip.

Create PCF8574 GPIO adapter.

try:

 mcp = PCF8574_GPIO(PCF8574_address)

http://www.freenove.com/
mailto:support@freenove.com

Chapter 20 LCD1602 220 www.freenove.com █

█ support@freenove.com

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

except:

 try:

 mcp = PCF8574_GPIO(PCF8574A_address)

 except:

 print ('I2C Address Error !')

 exit(1)

Create LCD, passing in MCP GPIO adapter.

lcd = Adafruit_CharLCD(pin_rs=0, pin_e=2, pins_db=[4,5,6,7], GPIO=mcp)

if __name__ == '__main__':

 print ('Program is starting ... ')

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

Two modules are used in the code, PCF8574.py and Adafruit_LCD1602.py. These two documents and the

code file are stored in the same directory, and neither of them is dispensable. Please do not delete. PCF8574.py

is used to provide I2C communication mode and operation method of some port for RPi and PCF8574 chip.

Adafruit module Adafruit_LCD1602.py is used to provide some function operation method for LCD1602.

In the code, first get the object used to operate PCF8574 port, then get the object used to operate LCD1602.

 address = 0x27 # I2C address of the PCF8574 chip.

Create PCF8574 GPIO adapter.

mcp = PCF8574_GPIO(address)

Create LCD, passing in MCP GPIO adapter.

lcd = Adafruit_CharLCD(pin_rs=0, pin_e=2, pins_db=[4,5,6,7], GPIO=mcp)

According to the circuit connection, port 3 of PCF8574 is connected to positive pole of LCD1602 backlight.

Then in the loop () function, use of mcp.output(3,1) to turn on LCD1602 backlight, and set number of LCD

lines and columns.

 def loop():

 mcp.output(3,1) # turn on the LCD backlight

 lcd.begin(16,2) # set number of LCD lines and columns

In the next while cycle, set the cursor position, and display the CPU temperature and time.

 while(True):

 #lcd.clear()

 lcd.setCursor(0,0) # set cursor position

 lcd.message('CPU: ' + get_cpu_temp()+'\n')# display CPU temperature

 lcd.message(get_time_now()) # display the time

 sleep(1)

CPU temperature is stored in file “/sys/class/thermal/thermal_zone0/temp”. Open the file and

read content of the file, and then convert it to Celsius degrees and return. Subfunction used to

get CPU temperature is shown below:

 def get_cpu_temp(): # get CPU temperature and store it into file

“/sys/class/thermal/thermal_zone0/temp”

 tmp = open('/sys/class/thermal/thermal_zone0/temp')

http://www.freenove.com/
mailto:support@freenove.com

221 Chapter 20 LCD1602

█ www.freenove.com

support@freenove.com █

 cpu = tmp.read()

 tmp.close()

 return '{:.2f}'.format(float(cpu)/1000) + ' C'

Subfunction used to get time:

 def get_time_now(): # get the time

 return datetime.now().strftime(' %H:%M:%S')

Details about PCF8574.py and Adafruit_LCD1602.py:

Module PCF8574

 This module provides two classes PCF8574_I2C and PCF8574_GPIO.

Class PCF8574_I2C：provides reading and writing method for PCF8574.

Class PCF8574_GPIO：provides a standardized set of GPIO functions.

More information can be viewed through opening PCF8574.py.

Adafruit_LCD1602 Module

Module Adafruit_LCD1602

This module provides the basic operation method of LCD1602, including class Adafruit_CharLCD. Some

member functions are described as follows:

def begin(self, cols, lines): set the number of lines and columns of the screen.

def clear(self): clear the screen

def setCursor(self, col, row): set the cursor position

def message(self, text): display contents

More information can be viewed through opening Adafruit_CharLCD.py.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 21 Hygrothermograph DHT11 222 www.freenove.com █

█ support@freenove.com

Chapter 21 Hygrothermograph DHT11

In this chapter, we will learn a commonly used sensor, Hygrothermograph DHT11.

Project 21.1 Hygrothermograph

Hygrothermograph is an important tool in our life to remind us of keeping warm and replenishing moisture

in time. In this project, we will use RPi to read temperature and humidity data of DHT11.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

DHT11 x1

Resistor 10kΩ x1

Jumper

Component knowledge

Temperature & Humidity Sensor DHT11 is a compound temperature & humidity sensor, and the output digital

signal has been calibrated inside.

It has 1S's initialization time after powered up. The operating voltage is within the range of 3.3V-5.5V.

http://www.freenove.com/
mailto:support@freenove.com

223 Chapter 21 Hygrothermograph DHT11

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 21 Hygrothermograph DHT11 224 www.freenove.com █

█ support@freenove.com

Code

The code is used to read the temperature and humidity data of DHT11, and print them out.

C Code 21.1.1 DHT11

First observe the project result, and then analyze the code.

1. Use cd command to enter 21.1.1_DHT11 directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/21.1.1_DHT11

2. Code of this project contains a custom header file. Use the following command to compile the code

DHT11.cpp and DHT.cpp and generate executable file DHT11. And the custom header file will be compiled

at the same time.

gcc DHT.cpp DHT11.cpp –o DHT11 –lwiringPi

3. Run the generated file "DHT11".

sudo ./DHT11

After the program is executed, the terminal window will display the current total number of reading times, the

read state, as well as the temperature and humidity value. As is shown below:

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

#include <wiringPi.h>

#include <stdio.h>

#include <stdint.h>

#include "DHT.hpp"

#define DHT11_Pin 0 //define the pin of sensor

int main(){

 DHT dht; //create a DHT class object

 int chk,sumCnt;//chk:read the return value of sensor; sumCnt:times of reading sensor

 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 while(1){

http://www.freenove.com/
mailto:support@freenove.com

225 Chapter 21 Hygrothermograph DHT11

█ www.freenove.com

support@freenove.com █

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

 chk = dht.readDHT11(DHT11_Pin); //read DHT11 and get a return value. Then

determine whether data read is normal according to the return value.

 sumCnt++; //counting number of reading times

 printf("The sumCnt is : %d \n",sumCnt);

 switch(chk){

 case DHTLIB_OK: //if the return value is DHTLIB_OK, the data is normal.

 printf("DHT11,OK! \n");

 break;

 case DHTLIB_ERROR_CHECKSUM: //data check has errors

 printf("DHTLIB_ERROR_CHECKSUM! \n");

 break;

 case DHTLIB_ERROR_TIMEOUT: //reading DHT times out

 printf("DHTLIB_ERROR_TIMEOUT! \n");

 break;

 case DHTLIB_INVALID_VALUE: //other errors

 printf("DHTLIB_INVALID_VALUE! \n");

 break;

 }

 printf("Humidity is %.2f %%, \t Temperature is %.2f

*C\n\n",dht.humidity,dht.temperature);

 delay(1000);

 }

 return 1;

}

In this project code, we use a custom library file "DHT.hpp". It is located in the same directory with program

files "DHT11.cpp" and "DHT.cpp", and methods for reading DHT sensor are provided in the library file. By

using this library, we can easily read the DHT sensor. First create a DHT class object in the code.

 DHT dht;

And then in the "while" cycle, use chk = dht.readDHT11 (DHT11_Pin) to read the DHT11, and determine

whether the data read is normal according to the return value "chk". And then use variable sumCnt to record

number of reading times.

 while(1){

 chk = dht.readDHT11(DHT11_Pin); //read DHT11 and get a return value. Then

determine whether data read is normal according to the return value.

 sumCnt++; //count number of times of reading

 printf("The sumCnt is : %d \n",sumCnt);

 switch(chk){

 case DHTLIB_OK: //if the return value is DHTLIB_OK, the data is normal.

 printf("DHT11,OK! \n");

 break;

 case DHTLIB_ERROR_CHECKSUM: //data check has errors

 printf("DHTLIB_ERROR_CHECKSUM! \n");

 break;

 case DHTLIB_ERROR_TIMEOUT: //reading DHT times out

http://www.freenove.com/
mailto:support@freenove.com

Chapter 21 Hygrothermograph DHT11 226 www.freenove.com █

█ support@freenove.com

 printf("DHTLIB_ERROR_TIMEOUT! \n");

 break;

 case DHTLIB_INVALID_VALUE: //other errors

 printf("DHTLIB_INVALID_VALUE! \n");

 break;

 }

Finally print the results:

 printf("Humidity is %.2f %%, \t Temperature is %.2f *C\n\n",dht.humidity,dht.temperature);

Library file "DHT.hpp" contains a DHT class and his public member functions int readDHT11 (int pin) is used

to read sensor DHT11 and store the temperature and humidity data read to member variables double

humidity and temperature. The implementation method of the function is included in the file "DHT.cpp".

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#include <wiringPi.h>

#include <stdio.h>

#include <stdint.h>

////read return flag of sensor

#define DHTLIB_OK 0

#define DHTLIB_ERROR_CHECKSUM -1

#define DHTLIB_ERROR_TIMEOUT -2

#define DHTLIB_INVALID_VALUE -999

#define DHTLIB_DHT11_WAKEUP 18

#define DHTLIB_DHT_WAKEUP 1

#define DHTLIB_TIMEOUT 100

class DHT{

 public:

 double humidity,temperature; //use to store temperature and humidity data read

 int readDHT11(int pin); //read DHT11

 private:

 int bits[5]; //Buffer to receiver data

 int readSensor(int pin,int wakeupDelay); //

};

Python Code 21.1.1 DHT11

First observe the project result, and then analyze the code.

1. Use cd command to enter 21.1.1_DHT11 directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/21.1.1_DHT11

2. Use python command to execute code "DHT11.py".

python DHT11.py

After the program is executed, the terminal window will display the current total number of read, the read

state, as well as the temperature and humidity value. As is shown below:

http://www.freenove.com/
mailto:support@freenove.com

227 Chapter 21 Hygrothermograph DHT11

█ www.freenove.com

support@freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

import RPi.GPIO as GPIO

import time

import Freenove_DHT as DHT

DHTPin = 11 #define the pin of DHT11

def loop():

 dht = DHT.DHT(DHTPin) #create a DHT class object

 sumCnt = 0 #number of reading times

 while(True):

 sumCnt += 1 #counting number of reading times

 chk = dht.readDHT11() #read DHT11 and get a return value. Then determine

whether data read is normal according to the return value.

 print ("The sumCnt is : %d, \t chk : %d"%(sumCnt,chk))

 if (chk is dht.DHTLIB_OK): #read DHT11 and get a return value. Then

determine whether data read is normal according to the return value.

 print("DHT11,OK!")

 elif(chk is dht.DHTLIB_ERROR_CHECKSUM): #data check has errors

 print("DHTLIB_ERROR_CHECKSUM!!")

 elif(chk is dht.DHTLIB_ERROR_TIMEOUT): #reading DHT times out

 print("DHTLIB_ERROR_TIMEOUT!")

 else: #other errors

 print("Other error!")

 print("Humidity : %.2f, \t Temperature : %.2f \n"%(dht.humidity,dht.temperature))

 time.sleep(2)

if __name__ == '__main__':

 print ('Program is starting ... ')

 try:

 loop()

http://www.freenove.com/
mailto:support@freenove.com

Chapter 21 Hygrothermograph DHT11 228 www.freenove.com █

█ support@freenove.com

31

32

33

 except KeyboardInterrupt:

 GPIO.cleanup()

 exit()

In this project code, we use a module "Freenove_DHT.py", which provide method of reading sensor DHT. It

is located in the same directory with program files "DHT11.py". By using this library, we can easily read the

DHT sensor. First create a DHT class object in the code.

 dht = DHT.DHT(DHTPin) #create a DHT class object

And then in the "while" cycle, use chk = dht.readDHT11 (DHT11Pin) to read the DHT11, and determine

whether the data read is normal according to the return value "chk". And then use variable sumCnt to record

number of reading times.

 while(True):

 sumCnt += 1 #counting number of reading times

 chk = dht.readDHT11(DHTPin) #read DHT11 and get a return value. Then

determine whether data read is normal according to the return value.

 print ("The sumCnt is : %d, \t chk : %d"%(sumCnt,chk))

 if (chk is dht.DHTLIB_OK): #read DHT11 and get a return value. Then

determine whether data read is normal according to the return value.

 print("DHT11,OK!")

 elif(chk is dht.DHTLIB_ERROR_CHECKSUM): #data check has errors

 print("DHTLIB_ERROR_CHECKSUM!!")

 elif(chk is dht.DHTLIB_ERROR_TIMEOUT): #reading DHT times out

 print("DHTLIB_ERROR_TIMEOUT!")

 else: #other errors

 print("Other error!")

Finally print the results:

 print("Humidity : %.2f, \t Temperature : %.2f \n"%(dht.humidity,dht.temperature))

Module "Freenove_DHT.py" contains a DHT class. And class functions def readDHT11 (pin) is used to read

sensor DHT11 and store the temperature and humidity data read to member variables humidity and

temperature.

Freenove_DHT Module

This is a Python module for reading the temperature and humidity data of the DHT sensor. Partial

functions and variables are described as follows:

Variable humidity: store humidity data read from sensor

Variable temperature: store temperature data read from sensor

def readDHT11 (pin): read the temperature and humidity of sensor DHT11, and return values used to

determine whether the data is normal.

http://www.freenove.com/
mailto:support@freenove.com

229 Chapter 22 Matrix Keypad

█ www.freenove.com

support@freenove.com █

Chapter 22 Matrix Keypad

We have learned usage of a single button before. In this chapter, we will learn a device which integrates a

number of key, matrix keyboard.

Project 22.1 Matrix Keypad

In this project, we will try to get every key code on the Keypad work.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

4x4 Matrix Keypad x1

Jumper

http://www.freenove.com/
mailto:support@freenove.com

Chapter 22 Matrix Keypad 230 www.freenove.com █

█ support@freenove.com

Component knowledge

4x4 Matrix Keypad

Keypad is a device that integrates a number of keys. As is shown below, a 4x4 Keypad integrates 16 keys:

Like the integration of LED matrix, in 4x4 Keypad each row of keys is connected in with one pin and it is the

same as each column. Such connection can reduce the occupation of processor port. Internal circuit is shown

below.

The usage method is similar to the Matrix LED, namely, uses a row scan or column scanning method to detect

the state of key on each column or row. Take column scanning method as an example, send low level to the

first 1 column (Pin1), detect level state of row 5, 6, 7, 8 to judge whether the key A, B, C, D are pressed. And

then send low level to column 2, 3, 4 in turn to detect whether other keys are pressed. Then, you can get the

state of all keys.

http://www.freenove.com/
mailto:support@freenove.com

231 Chapter 22 Matrix Keypad

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

http://www.freenove.com/
mailto:support@freenove.com

Chapter 22 Matrix Keypad 232 www.freenove.com █

█ support@freenove.com

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

233 Chapter 22 Matrix Keypad

█ www.freenove.com

support@freenove.com █

Code

This code is used to obtain all key code of 4x4 Matrix Keypad, when one of keys is pressed, the key code will

be printed out in the terminal window.

C Code 22.1.1 MatrixKeypad

First observe the project result, and then analyze the code.

1. Use cd command to enter 22.1.1_MatrixKeypad directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/22.1.1_MatrixKeypad

2. Code of this project contains a custom header file. Use the following command to compile the code

MatrixKeypad.cpp, Keypad.cpp and Key.cpp generate executable file MatrixKeypad. And the custom

header file will be compiled at the same time.

gcc MatrixKeypad.cpp Keypad.cpp Key.cpp –o MatrixKeypad –lwiringPi

3. Run the generated file "MatrixKeypad".

sudo ./MatrixKeypad

After the program is executed, press any key on the MatrixKeypad, the terminal will print out the

corresponding key code. As is shown below:

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

#include "Keypad.hpp"

#include <stdio.h>

const byte ROWS = 4; //four rows

const byte COLS = 4; //four columns

char keys[ROWS][COLS] = { //key code

 {'1','2','3','A'},

 {'4','5','6','B'},

 {'7','8','9','C'},

 {'*','0','#','D'}

};

byte rowPins[ROWS] = {1, 4, 5, 6 }; //connect to the row pinouts of the keypad

byte colPins[COLS] = {12,3, 2, 0 }; //connect to the column pinouts of the keypad

//create Keypad object

http://www.freenove.com/
mailto:support@freenove.com

Chapter 22 Matrix Keypad 234 www.freenove.com █

█ support@freenove.com

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

int main(){

 printf("Program is starting ... \n");

 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

char key = 0;

keypad.setDebounceTime(50);

 while(1){

 key = keypad.getKey(); //get the state of keys

 if (key){ //if a key is pressed, print out its key code

 printf("You Pressed key : %c \n",key);

 }

 }

 return 1;

}

In this project code, we use two custom library file "Keypad.hpp" and "Key.hpp". They are located in the same

directory with program files "MatrixKeypad.cpp", "Keypad.cpp" and "Key.cpp". Library Keypad is transplanted

from the Arduino library Keypad. And this library file provides a method to read the keyboard. By using this

library, we can easily read the matrix keyboard.

First, define the information of the matrix keyboard used in this project: the number of rows and columns,

code of each key and GPIO pin connected to each column and each row. It is necessary to include the header

file "Keypad.hpp".

 #include "Keypad.hpp"

#include <stdio.h>

const byte ROWS = 4; //four rows

const byte COLS = 4; //four columns

char keys[ROWS][COLS] = { //key code

 {'1','2','3','A'},

 {'4','5','6','B'},

 {'7','8','9','C'},

 {'*','0','#','D'}

};

byte rowPins[ROWS] = {1, 4, 5, 6 }; //connect to the row pinouts of the keypad

byte colPins[COLS] = {12,3, 2, 0 }; //connect to the column pinouts of the keypad

And then, based on the above information, instantiate a Keypad class object to operate the matrix keyboard.

 Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

Set the debounce time to 50ms, and this value can be set based on the actual use of the keyboard flexibly,

with default time 10ms.

 keypad.setDebounceTime(50);

In the "while" cycle, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key

pressed, its key code will be stored in the variable "key", then be printed out.

http://www.freenove.com/
mailto:support@freenove.com

235 Chapter 22 Matrix Keypad

█ www.freenove.com

support@freenove.com █

 while(1){

 key = keypad.getKey(); //get the state of keys

 if (key){ // if a key is pressed, print out its key code

 printf("You Pressed key : %c \n",key);

 }

 }

The library Keypad used for RPi is transplanted from the Arduino library Keypad. And the source files can be

obtained by visiting http://playground.arduino.cc/Code/Keypad. As for transplanted function library, the

function and method of all classes, functions, variables, etc. are the same as the original library. Partial contents

of the Keypad library are described below:

class Keypad

Keypad(char *userKeymap, byte *row, byte *col, byte numRows, byte numCols);

Constructor, the parameters are: key code of keyboard, row pin, column pin, the number of rows, the

number of columns.

char getKey();

Get the key code of the pressed key. If no key is pressed, the return value is NULL.

void setDebounceTime(uint);

Set the debounce time. And the default time is 10ms.

void setHoldTime(uint);

Set the time when the key holds stable state after pressed.

bool isPressed(char keyChar);

Judge wether the key with code "keyChar" is pressed.

char waitForKey();

Wait for a key to be pressed, and return key code of the pressed key.

KeyState getState();

Get state of the keys.

bool keyStateChanged();

Judge whether there is a change of key state, then return True or False.

For More information about Keypad, please visit: http://playground.arduino.cc/Code/Keypad or through the

opening file "Keypad.hpp".

http://www.freenove.com/
mailto:support@freenove.com
http://playground.arduino.cc/Code/Keypad
http://playground.arduino.cc/Code/Keypad

Chapter 22 Matrix Keypad 236 www.freenove.com █

█ support@freenove.com

Python Code 22.1.1 MatrixKeypad

First observe the project result, and then analyze the code.

1. Use cd command to enter 22.1.1_MatrixKeypad directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/22.1.1_MatrixKeypad

2. Use python command to execute code "MatrixKeypad.py".

python MatrixKeypad.py

After the program is executed, press any key on the MatrixKeypad, the terminal will print out the

corresponding key code. As is shown below:

The following is the program code：

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

import RPi.GPIO as GPIO

import Keypad #import module Keypad

ROWS = 4 # number of rows of the Keypad

COLS = 4 #number of columns of the Keypad

keys = ['1','2','3','A', #key code

 '4','5','6','B',

 '7','8','9','C',

 '*','0','#','D']

rowsPins = [12,16,18,22] #connect to the row pinouts of the keypad

colsPins = [19,15,13,11] #connect to the column pinouts of the keypad

def loop():

 keypad = Keypad.Keypad(keys,rowsPins,colsPins,ROWS,COLS) #creat Keypad object

 keypad.setDebounceTime(50) #set the debounce time

 while(True):

 key = keypad.getKey() #obtain the state of keys

 if(key != keypad.NULL): #if there is key pressed, print its key code.

 print ("You Pressed Key : %c "%(key))

if __name__ == '__main__': #Program start from here

 print ("Program is starting ... ")

 try:

http://www.freenove.com/
mailto:support@freenove.com

237 Chapter 22 Matrix Keypad

█ www.freenove.com

support@freenove.com █

23

24

25

 loop()

 except KeyboardInterrupt: #When 'Ctrl+C' is pressed, exit the program.

 GPIO.cleanup()

In this project code, we use two custom module "Keypad.py", which is located in the same directory with

program file "MatrixKeypad.py". And this library file, which is transplanted from Arduino function library

Keypad, provides a method to read the keyboard. By using this library, we can easily read the matrix keyboard.

First, import module Keypad. Then define the information of the matrix keyboard used in this project: the

number of rows and columns, code of each key and GPIO pin connected to each column and each row.

 import Keypad #import module Keypad

ROWS = 4 #number of rows of the Keypad

COLS = 4 #number of columns of the Keypad

keys = ['1','2','3','A', #key code

 '4','5','6','B',

 '7','8','9','C',

 '*','0','#','D']

rowsPins = [12,16,18,22] #connect to the row pinouts of the keypad

colsPins = [19,15,13,11] #connect to the column pinouts of the keypad

And then, based on the above information, instantiate a Keypad class object to operate the matrix keyboard.

 keypad = Keypad.Keypad(keys,rowsPins,colsPins,ROWS,COLS)

Set the debounce time to 50ms, and this value can be set based on the actual use of the keyboard flexibly,

with default time 10ms.

 keypad.setDebounceTime(50)

In the "while" cycle, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key

pressed, its key code will be stored in the variable "key", and then be printed out.

 while(True):

 key = keypad.getKey() #get the state of keys

 if(key != keypad.NULL): # if a key is pressed, print out its key code

 print ("You Pressed Key : %c "%(key))

http://www.freenove.com/
mailto:support@freenove.com

Chapter 22 Matrix Keypad 238 www.freenove.com █

█ support@freenove.com

The library Keypad used for RPi is transplanted from the Arduino library Keypad. The source files is written by

language C++ and translated to Python can be obtained by visiting

http://playground.arduino.cc/Code/Keypad. As for transplanted function library, the function and method of

all classes, functions, variables, etc. are the same as the original library. Partial contents of the Keypad library

are described below:

class Keypad

def __init__(self,usrKeyMap,row_Pins,col_Pins,num_Rows,num_Cols):

Constructed function, the parameters are: key code of keyboard, row pin, column pin, the number of rows,

the number of columns.

def getKey(self):

Get a pressed key. If no key is pressed, the return value is keypad NULL.

def setDebounceTime(self,ms):

Set the debounce time. And the default time is 10ms.

def setHoldTime(self,ms):

Set the time when the key holds stable state after pressed.

def isPressed(keyChar):

Judge wether the key with code "keyChar" is pressed.

def waitForKey():

Wait for a key to be pressed, and return key code of the pressed key.

def getState():

Get state of the keys.

def keyStateChanged():

Judge whether there is a change of key state, then return True or False.

For More information about Keypad, please visit: http://playground.arduino.cc/Code/Keypad or through the

opening file "Keypad.py".

http://www.freenove.com/
mailto:support@freenove.com
http://playground.arduino.cc/Code/Keypad
http://playground.arduino.cc/Code/Keypad

239 Chapter 23 Ultrasonic Ranging

█ www.freenove.com

support@freenove.com █

Chapter 23 Ultrasonic Ranging

In this chapter, we learn a module which use ultrasonic to measure distance, HC SR04.

Project 23.1 Ultrasonic Ranging

In this project, we use ultrasonic ranging module to measure distance, and print out the data in the terminal.

Component List

Raspberry Pi 3B x1

GPIO Expansion Board & Wire x1

BreadBoard x1

HC SR501 x1

Jumper

http://www.freenove.com/
mailto:support@freenove.com

Chapter 23 Ultrasonic Ranging 240 www.freenove.com █

█ support@freenove.com

Component Knowledge

Ultrasonic ranging module use the principle that ultrasonic will reflect when it encounters obstacles. Start

counting the time when ultrasonic is transmitted. And when ultrasonic encounters an obstacle, it will reflect

back. The counting will end after ultrasonic is received, and the time difference is the total time of ultrasonic

from transmitting to receiving. Because the speed of sound in air is constant, and is about v=340m/s. So we

can calculate the distance between the model and the obstacle: s=vt/2.

 2S=V·t.

Ultrasonic module integrates a transmitter and a receiver. The transmitter is used to convert electrical signals

(electrical energy) into sound waves (mechanical energy) and the function of the receiver is opposite. The

object picture and the diagram of HC SR04 ultrasonic module are shown below:

Pin description:

VCC power supply pin

Trig trigger pin

Echo Echo pin

GND GND

Technical specs:

Working voltage: 5V

Working current: 12mA

Minimum measured distance: 2cm

Maximum measured distance: 200cm

Size: 45mm*20mm*15mm

Instructions for use: output a high-level pulse in Trig pin lasting for least 10uS. Then the module begins to

transmit ultrasonic. At the same time, the Echo pin will be pulled up. When the module receives the returned

ultrasonic, the Echo pin will be pulled down. The duration of high level in Echo pin is the total time of the

ultrasonic from transmitting to receiving, s=vt/2.

http://www.freenove.com/
mailto:support@freenove.com

241 Chapter 23 Ultrasonic Ranging

█ www.freenove.com

support@freenove.com █

Circuit

Note that the voltage of ultrasonic module is 5V in the circuit.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 23 Ultrasonic Ranging 242 www.freenove.com █

█ support@freenove.com

Code

C Code 23.1.1 UltrasonicRanging

First observe the project result, and then analyze the code.

1. Use cd command to enter 23.1.1_UltrasonicRanging directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/23.1.1_UltrasonicRanging

2. Use following command to compile "UltrasonicRanging.c" and generate executable file

"UltrasonicRanging".

gcc UltrasonicRanging.c –o UltrasonicRanging –lwiringPi

3. Then run the generated file "UltrasonicRanging".

sudo ./UltrasonicRanging

After the program is executed, make the detector of ultrasonic ranging module aim at the plane of an object,

then the distance between the ultrasonic module and the object will be displayed in the terminal. As is shown

below:

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

#include <wiringPi.h>

#include <stdio.h>

#include <sys/time.h>

#define trigPin 4

#define echoPin 5

#define MAX_DISTANCE 220 // define the maximum measured distance

#define timeOut MAX_DISTANCE*60 // calculate timeout according to the maximum measured

distance

//function pulseIn: obtain pulse time of a pin

int pulseIn(int pin, int level, int timeout);

float getSonar(){ // get the measurement results of ultrasonic module, with unit: cm

 long pingTime;

 float distance;

 digitalWrite(trigPin,HIGH); //trigPin send 10us high level

 delayMicroseconds(10);

 digitalWrite(trigPin,LOW);

 pingTime = pulseIn(echoPin,HIGH,timeOut); //read plus time of echoPin

 distance = (float)pingTime * 340.0 / 2.0 / 10000.0; // the sound speed is 340m/s, and

calculate distance

 return distance;

}

http://www.freenove.com/
mailto:support@freenove.com

243 Chapter 23 Ultrasonic Ranging

█ www.freenove.com

support@freenove.com █

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

int main(){

 printf("Program is starting ... \n");

 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen

 printf("setup wiringPi failed !");

 return 1;

 }

 float distance = 0;

 pinMode(trigPin,OUTPUT);

 pinMode(echoPin,INPUT);

 while(1){

 distance = getSonar();

 printf("The distance is : %.2f cm\n",distance);

 delay(1000);

 }

 return 1;

}

First, define the pins and the maximum measurement distance.

 #define trigPin 4

#define echoPin 5

#define MAX_DISTANCE 220 //define the maximum measured distance

If the module does not return high level, we can not wait forever. So we need to calculate the lasting time

over maximum distance, that is, time Out. timOut= 2*MAX_DISTANCE/100/340*1000000. The constant part

behind is approximately equal to 58.8.

 #define timeOut MAX_DISTANCE*60

Subfunction getSonar () function is used to start the ultrasonic module for a measurement, and return the

measured distance with unit cm. In this function, first let trigPin send 10us high level to start the ultrasonic

module. Then use pulseIn () to read ultrasonic module and return the duration of high level. Finally calculate

the measured distance according to the time.

 float getSonar(){ // get the measurement results of ultrasonic module, with unit: cm

 long pingTime;

 float distance;

 digitalWrite(trigPin,HIGH); //trigPin send 10us high level

 delayMicroseconds(10);

 digitalWrite(trigPin,LOW);

 pingTime = pulseIn(echoPin,HIGH,timeOut); //read plus time of echoPin

 distance = (float)pingTime * 340.0 / 2.0 / 10000.0; // the sound speed is 340m/s, and

calculate distance

 return distance;

}

http://www.freenove.com/
mailto:support@freenove.com

Chapter 23 Ultrasonic Ranging 244 www.freenove.com █

█ support@freenove.com

Finally, in the while loop of main function, get the measurement distance and print it out constantly.

 while(1){

 distance = getSonar();

 printf("The distance is : %.2f cm\n",distance);

 delay(1000);

 }

About function pulseIn():

int pulseIn(int pin, int level, int timeout);

Return the length of the pulse (in microseconds) or 0 if no pulse is completed before the timeout (unsigned

long).

Python Code 23.1.1 UltrasonicRanging

First observe the project result, and then analyze the code.

1. Use cd command to enter 23.1.1_UltrasonicRanging directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/23.1.1_UltrasonicRanging

2. Use python command to execute code "UltrasonicRanging.py".

python UltrasonicRanging.py

After the program is executed, make the detector of ultrasonic ranging module aim at the plane of an object,

then the distance between the ultrasonic module and the object will be displayed in the terminal. As is shown

below:

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

import RPi.GPIO as GPIO

import time

trigPin = 16

echoPin = 18

MAX_DISTANCE = 220 #define the maximum measured distance

timeOut = MAX_DISTANCE*60 #calculate timeout according to the maximum measured distance

def pulseIn(pin,level,timeOut): # function pulseIn: obtain pulse time of a pin

 t0 = time.time()

 while(GPIO.input(pin) != level):

 if((time.time() - t0) > timeOut*0.000001):

 return 0;

 t0 = time.time()

 while(GPIO.input(pin) == level):

 if((time.time() - t0) > timeOut*0.000001):

 return 0;

http://www.freenove.com/
mailto:support@freenove.com

245 Chapter 23 Ultrasonic Ranging

█ www.freenove.com

support@freenove.com █

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

 pulseTime = (time.time() - t0)*1000000

 return pulseTime

def getSonar(): #get the measurement results of ultrasonic module,with unit: cm

 GPIO.output(trigPin,GPIO.HIGH) #make trigPin send 10us high level

 time.sleep(0.00001) #10us

 GPIO.output(trigPin,GPIO.LOW)

 pingTime = pulseIn(echoPin,GPIO.HIGH,timeOut) #read plus time of echoPin

 distance = pingTime * 340.0 / 2.0 / 10000.0 # the sound speed is 340m/s, and

calculate distance

 return distance

def setup():

 print ('Program is starting...')

 GPIO.setmode(GPIO.BOARD) #numbers GPIOs by physical location

 GPIO.setup(trigPin, GPIO.OUT) #

 GPIO.setup(echoPin, GPIO.IN) #

def loop():

 GPIO.setup(11,GPIO.IN)

 while(True):

 distance = getSonar()

 print ("The distance is : %.2f cm"%(distance))

 time.sleep(1)

if __name__ == '__main__': #program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: #when 'Ctrl+C' is pressed, the program will exit

 GPIO.cleanup() #release resource

First, define the pins and the maximum measurement distance.

 trigPin = 16

echoPin = 18

MAX_DISTANCE = 220 # define the maximum measured distance

If the module does not return high level, we can not wait forever. So we need to calculate the lasting time

over maximum distance, that is, time Out. timOut= 2*MAX_DISTANCE/100/340*1000000. The constant part

behind is approximately equal to 58.8.

 timeOut = MAX_DISTANCE*60

http://www.freenove.com/
mailto:support@freenove.com

Chapter 23 Ultrasonic Ranging 246 www.freenove.com █

█ support@freenove.com

Subfunction getSonar () function is used to start the ultrasonic module for a measurement, and return the

measured distance with unit cm. In this function, first let trigPin send 10us high level to start the ultrasonic

module. Then use pulseIn () to read ultrasonic module and return the duration of high level. Finally calculate

the measured distance according to the time.

 def getSonar(): #get the measurement results of ultrasonic module, with unit: cm

 GPIO.output(trigPin,GPIO.HIGH) #make trigPin send 10us high level

 time.sleep(0.00001) #10us

 GPIO.output(trigPin,GPIO.LOW)

 pingTime = pulseIn(echoPin,GPIO.HIGH,timeOut) #read plus time of echoPin

 distance = pingTime * 340.0 / 2.0 / 10000.0 # the sound speed is 340m/s, and

calculate distance

 return distance

Finally, in the while loop of main function, get the measurement distance and print it out constantly.

 while(True):

 distance = getSonar()

 print ("The distance is : %.2f cm"%(distance))

 time.sleep(1)

About function def pulseIn(pin,level,timeOut)：

def pulseIn(pin,level,timeOut):

Return the length of the pulse (in microseconds) or 0 if no pulse is completed before the timeout (unsigned

long).

http://www.freenove.com/
mailto:support@freenove.com

247 Chapter 24 RFID

█ www.freenove.com

support@freenove.com █

Chapter 24 RFID

In this chapter, we will learn how to use RFID.

Project 24.1 RFID

In this project, we will use RC522 RFID card reader to read and write the M1-S50 card.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

Breadboard power module x1

Jumper M/F x7

Mifare1 S50 Standard card x1

Mifare1 S50 Non-standard card x1

http://www.freenove.com/
mailto:support@freenove.com

Chapter 24 RFID 248 www.freenove.com █

█ support@freenove.com

Component Knowledge

RFID

RFID（Radio Frequency Identification）is a wireless communication technology. A complete RFID system is

generally composed of the responder and reader. Generally, we use tags as responders, and each tag has a

unique code, which is attached to the object to identify the target object. The reader is a device for reading

(or writing) tag information.

Products derived from RFID technology can be divided into three categories: passive RFID products, active

RFID products and semi active RFID products. And Passive RFID products are the earliest, the most mature

and most widely used products in the market among others. It can be seen everywhere in our daily life such

as, the bus card, dining card, bank card, hotel access cards, etc., and all of these belong to close-range contact

recognition. The main operating frequency of Passive RFID products are: 125KHZ (low frequency), 13.56MHZ

(high frequency), 433MHZ (ultrahigh frequency), 915MHZ (ultrahigh frequency). Active and semi active RFID

products work at higher frequencies.

The RFID module we use is a passive RFID product with the operating frequency of 13.56MHz.

MFRC522

The MFRC522 is a highly integrated reader/writer IC for contactless communication at 13.56MHz.

The MFRC522’s internal transmitter is able to drive a reader/writer antenna designed to communicate with

ISO/IEC 14443 A/MIFARE cards and transponders without additional active circuitry. The receiver module

provides a robust and efficient implementation for demodulating and decoding signals from ISO/IEC 14443

A/MIFARE compatible cards and transponders. The digital module manages the complete ISO/IEC 14443A

framing and error detection (parity and CRC) functionality

This RFID Module uses MFRC522 as the control chip, and SPI (Peripheral Interface Serial) as the reserved

interface.

Technical specs:

Operating Voltage 13-26mA(DC)\3.3V

Idle current 10-13mA(DC)\3.3V

Sleep current in the <80uA

Peak current <30mA

Operating frequency 13.56MHz

Supported card type
Mifare1 S50、Mifare1 S70、Mifare

Ultralight、Mifare Pro、Mifare Desfire

Size 40mmX60mm

Operation temperature 20-80 degrees(Celsius)

Storage temperature 40-85 degrees (Celsius)

Operation humidity 5%-95%(Relative humidity)

Mifare1 S50 Card

Mifare S50 is often called Mifare Standard with the capacity of 1K bytes. And each card has a 4-bytes global

unique identifier number (USN/UID), which can be rewritten 100 thousand times and read infinite times. Its

storage period can last for 10 years. The ordinary Mifare1 S50 Card and non-standard Mifare1 S50 Card

equipped for Freenove RFID Kit are shown below.

The Mifare S50 capacity (1K byte) is divided into 16 sectors (Sector0-Sector15). Each sector contains 4 data

http://www.freenove.com/
mailto:support@freenove.com

249 Chapter 24 RFID

█ www.freenove.com

support@freenove.com █

block (Block0-Block3. 64 blocks of 16 sectors will be numbered according absolute address, from 0 to 63).

And each block contains 16 bytes (Byte0-Byte15), 64*16=1024. As is shown in the following table:

Sector No. Block No. Storage area Block type Absolute

block No.

sector 0 block 0 vendor code vendor block 0

 block 1 data block 1

 block 2 data block 2

 block 3 Password A-access control-password B control block 3

sector 1 block 0 data block 4

 block 1 data block 5

 block 2 data block 6

 block 3 Password A-access control-password B control block 7

…… …… …… ……

sector 15 block 0 data block 60

 block 1 data block 61

 block 2 data block 62

 block 3 Password A-access control-password B control block 63

Each sector has a set of independent password and access control which are put in the last block of each

sector, and the block is also known as sector trailer, that is Block 3 in each sector. Sector 0, block 0 (namely

absolute address 0) of S50 is used to store the vendor code, which has been solidified and can’t be changed,

and the card serial number is stored here. In addition to the manufacturer and the control block, the rest of

the cards are data blocks, which can be used to store data. Data block can be used for two kinds of applications:

(1) used as general data storage and can be operated for reading and writing.

(2) used as data value, and can be operated for initializing the value, adding value, subtracting and reading

the value.

The sector trailer block in each sector is the control block, including a 6-byte password A, 4-byte access

control and 6-byte password B. For example, the control block of a brand new card is as follows:

A0 A1 A2 A3 A4 A5 FF 07 80 69 B0 B1 B2 B3 B4 B5

password A access control password B

The default password of a brand new card is generally 0A1A2A3A4A5 for password A, B0B1B2B3B4B5 for

password B, or both the password A and password B are 6 FF. Access control is used to set the access

conditions for each block (including the control block itself) in a sector.

Blocks of S50 are divided into data blocks and control blocks. There are four operations, "read", "write", "add

value", "subtract value (including transmission and storage)" for data blocks, and there are two operations,

"read" and "write" for control blocks.

For more details about how to set data blocks and control blocks, please refer to Datasheet.

By default, after verifying password A or password B, we can do reading or writing operation to data blocks.

And after verifying password A, we can do reading or writing operation to control blocks. But password A can

never be read. If you choose to verify password A and then you forget the password A, the block will never

be able to read again. It is highly recommended that beginners should not try to change the contents of

control blocks.

For Mifare1 S50 card equipped for Freenove RFID Kit, the default password A and B is FFFFFFFFFFFF.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 24 RFID 250 www.freenove.com █

█ support@freenove.com

Circuit

Schematic diagram：

Hardware connection：

http://www.freenove.com/
mailto:support@freenove.com

251 Chapter 24 RFID

█ www.freenove.com

support@freenove.com █

Configure SPI

Enable SPI

The SPI interface raspberry pie is closed in default. You need to open it manually. You can enable the SPI

interface in the following way.

Type command in the terminal:

sudo raspi-config

Then open the following dialog box:

Choose “5 Interfacing Options”“P4 SPI”“Yes”“Finish” in order and restart your RPi later. Then the SPI

module is started.

Type the following command to check whether the module SPI is loaded successfully:

ls /dev/sp*

The following result indicates that the module SPI has been loaded successfully:

Install Python module SPI-Py

If you use Python language to write the code, please follow the step below to install the module SPI-Py. If

you use C/C++ language, you can skip this step.

Open the terminal and type the following command to install:

git clone https://github.com/lthiery/SPI-Py.git

cd SPI-Py

sudo python setup.py install

http://www.freenove.com/
mailto:support@freenove.com
https://github.com/lthiery/SPI-Py.git

Chapter 24 RFID 252 www.freenove.com █

█ support@freenove.com

Code

The project code use human-computer interaction command line mode to read and write the M1-S50 card.

C Code 24.1.1 RFID

First observe the running result, and then analyze the code.

1. Use cd command to enter 24.1.1_RFID directory of C code.

cd Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/24.1.1_RFID

2. Use following command to compile and generate executable file "RFID".

sudo ./build.sh

3. Then run the generated file "RFID".

sudo ./RFID

After the program is executed, the following contents will be displayed in the terminal:

Here, type the command “quit” to exit the program.

Type command "scan", then the program begins to detect whether there is a card close to the sensing area

of MFRC522 reader. Place an M1-S50 card in the sensing area. The following results indicate that the M1-S50

card has been detected, the UID of which is E6CF5C8EFB (HEX).

When the Card is placed in the sensing area, you can read and write the card through the following command.

http://www.freenove.com/
mailto:support@freenove.com

253 Chapter 24 RFID

█ www.freenove.com

support@freenove.com █

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range

is 0-63. This command is used to display all the data from blockstart address to the end of the sector. For

example, sector 0 contains data block 0,1,2,3. Using the command read 0 can display all contents of data

block 0,1,2,3. Using the command read 1 can display all contents of data block 1,2,3. As is shown below:

Command dump is used to display the content of all data blocks in all sectors.

Command <address> <data> is used to write “data" to data block with address “address”. Where the address

range is 0-63 and the data length is 0-16. For example, if you want to write the string "Freenove" to the data

block with address “1”, you can type the following command.

write 1 Freenove

Read the contents of this sector and check the data just written.

read 0

The following results indicate that the string "Freenove" has been written successfully into the data block 1.

Command clean <address> is used remove the contents of the data block with address "address". For

example, if you want to clear the contents of the data block 1 that has just been written, you can type the

following command.

clean 1

http://www.freenove.com/
mailto:support@freenove.com

Chapter 24 RFID 254 www.freenove.com █

█ support@freenove.com

Read the contents of data blocks in this sector again to test whether the data is erased. The following results

indicate that the contents of data block 1 have been erased.

Command halt is used to quit the selection state of the card.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

#include <stdio.h>

#include <stdint.h>

#include <unistd.h>

#include <string.h>

#include <getopt.h>

#include <stdlib.h>

#include "mfrc522.h"

#define DISP_COMMANDLINE() printf("RC522>")

int scan_loop(uint8_t *CardID);

int tag_select(uint8_t *CardID);

int main(int argc, char **argv) {

 MFRC522_Status_t ret;

 //Recognized card ID

 uint8_t CardID[5] = { 0x00, };

 static char command_buffer[1024];

 ret = MFRC522_Init('A');

 if (ret < 0) {

 perror("Failed to initialize");

 exit(-1);

 }

 printf("User Space RC522 Application\r\n");

 while (1) {

 /*Main Loop Start*/

 DISP_COMMANDLINE();

http://www.freenove.com/
mailto:support@freenove.com

255 Chapter 24 RFID

█ www.freenove.com

support@freenove.com █

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

 scanf("%s", command_buffer);

 if (strcmp(command_buffer, "scan") == 0) {

 puts("Scanning");

 while (1) {

 ret = MFRC522_Check(CardID);

 if (ret != MI_OK) {

 printf(".");

 fflush(stdout);

 continue;

 }

 ret |= tag_select(CardID);

 if (ret == MI_OK) {

 ret = scan_loop(CardID);

 if (ret < 0) {

 goto END_SCAN;

 } else if (ret == 1) {

 goto HALT;

 }

 }

 }

 END_SCAN: printf("Card error...");

 HALT: puts("Halt");

 } else if (strcmp(command_buffer, "quit") == 0

 || strcmp(command_buffer, "exit") == 0) {

 return 0;

 } else {

 puts("Unknown command");

 puts("scan:scan card and dump");

 puts("quit:exit program");

 }

 /*Main Loop End*/

 }

}

int scan_loop(uint8_t *CardID) {

 while (1) {

 char input[32];

 int block_start;

 DISP_COMMANDLINE();

 printf("%02X%02X%02X%02X>", CardID[0], CardID[1], CardID[2], CardID[3]);

 scanf("%s", input);

 puts((char*)input);

 if (strcmp(input, "halt") == 0) {

http://www.freenove.com/
mailto:support@freenove.com

Chapter 24 RFID 256 www.freenove.com █

█ support@freenove.com

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

 return 1;

 } else if (strcmp(input, "dump") == 0) {

 if (MFRC522_Debug_CardDump(CardID) < 0)

 return -1;

 } else if (strcmp(input, "read") == 0) {

 scanf("%d", &block_start);

 if (MFRC522_Debug_DumpSector(CardID, block_start) < 0) {

 return -1;

 }

 } else if(strcmp(input, "clean") == 0){

 char c;

 scanf("%d", &block_start);

 while ((c = getchar()) != '\n' && c != EOF)

 ;

 if (MFRC522_Debug_Clean(CardID, block_start)) {

 return -1;

 }

 } else if (strcmp(input, "write") == 0) {

 char write_buffer[256];

 size_t len = 0;

 scanf("%d", &block_start);

 scanf("%s",write_buffer);

 if (len >= 0) {

 if (MFRC522_Debug_Write(CardID, block_start, write_buffer,

 strlen(write_buffer)) < 0) {

 return -1;

 }

 }

 } else {

 printf(

 "Usage:\r\n" "\tread <blockstart>\r\n" "\tdump\r\n"

"\thalt\r\n" "\tclean <blockaddr>\r\n" "\twrite <blockaddr> <data>\r\n");

 return 0;

 }

 }

 return 0;

}

int tag_select(uint8_t *CardID) {

 int ret_int;

 printf(

 "Card detected 0x%02X 0x%02X 0x%02X 0x%02X, Check Sum = 0x%02X\r\n",

http://www.freenove.com/
mailto:support@freenove.com

257 Chapter 24 RFID

█ www.freenove.com

support@freenove.com █

118

119

120

121

122

123

124

125

126

127

128

129

 CardID[0], CardID[1], CardID[2], CardID[3], CardID[4]);

 ret_int = MFRC522_SelectTag(CardID);

 if (ret_int == 0) {

 printf("Card Select Failed\r\n");

 return -1;

 } else {

 printf("Card Selected, Type:%s\r\n",

 MFRC522_TypeToString(MFRC522_ParseType(ret_int)));

 }

 ret_int = 0;

 return ret_int;

}

In the code, first initialize the MFRC522. If the initialization fails, the program will exit.

 ret = MFRC522_Init('A');

 if (ret < 0) {

 perror("Failed to initialize");

 exit(-1);

 }

In the main function, wait for the command input. If command "scan" is received, the function will begin to

detect whether there is a card close to the sensing area. If a card is detected, the card will be selected and

card UID will be acquired. Then enter the function scan_loop (). If command "quit" or "exit" is received, the

program will exit.

 scanf("%s", command_buffer);

 if (strcmp(command_buffer, "scan") == 0) {

 puts("Scanning");

 while (1) {

 ret = MFRC522_Check(CardID);

 if (ret != MI_OK) {

 printf(".");

 fflush(stdout);

 continue;

 }

 ret |= tag_select(CardID);

 if (ret == MI_OK) {

 ret = scan_loop(CardID);

 if (ret < 0) {

 goto END_SCAN;

 } else if (ret == 1) {

 goto HALT;

 }

 }

 }

 END_SCAN: printf("Card error...");

 HALT: puts("Halt");

http://www.freenove.com/
mailto:support@freenove.com

Chapter 24 RFID 258 www.freenove.com █

█ support@freenove.com

 } else if (strcmp(command_buffer, "quit") == 0

 || strcmp(command_buffer, "exit") == 0) {

 return 0;

 } else {

 puts("Unknown command");

 puts("scan:scan card and dump");

 puts("quit:exit program");

 }

 /*Main Loop End*/

 }

The function scan_loop() will detect command read, write, clean, halt, dump and do the corresponding

processing to each command. The function of each command and the method have been introduced before.

 int scan_loop(uint8_t *CardID) {

 while (1) {

 char input[32];

 int block_start;

 DISP_COMMANDLINE();

 printf("%02X%02X%02X%02X>", CardID[0], CardID[1], CardID[2], CardID[3]);

 scanf("%s", input);

 puts((char*)input);

 if (strcmp(input, "halt") == 0) {

 return 1;

 } else if (strcmp(input, "dump") == 0) {

 if (MFRC522_Debug_CardDump(CardID) < 0)

 return -1;

 } else if (strcmp(input, "read") == 0) {

 scanf("%d", &block_start);

 if (MFRC522_Debug_DumpSector(CardID, block_start) < 0) {

 return -1;

 }

 } else if(strcmp(input, "clean") == 0){

 char c;

 scanf("%d", &block_start);

 while ((c = getchar()) != '\n' && c != EOF)

 ;

 if (MFRC522_Debug_Clean(CardID, block_start)) {

 return -1;

 }

 } else if (strcmp(input, "write") == 0) {

 char write_buffer[256];

 size_t len = 0;

http://www.freenove.com/
mailto:support@freenove.com

259 Chapter 24 RFID

█ www.freenove.com

support@freenove.com █

 scanf("%d", &block_start);

 scanf("%s",write_buffer);

 if (len >= 0) {

 if (MFRC522_Debug_Write(CardID, block_start, write_buffer,

 strlen(write_buffer)) < 0) {

 return -1;

 }

 }

 } else {

 printf(

 "Usage:\r\n" "\tread <blockstart>\r\n" "\tdump\r\n" "\thalt\r\n"

 "\tclean <blockaddr>\r\n" "\twrite <blockaddr> <data>\r\n");

 return 0;

 }

 }

 return 0;

}

The header file "mfrc522.h" contains the associated operation method for the MFRC522. You can open the

file to view all the definitions and functions.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 24 RFID 260 www.freenove.com █

█ support@freenove.com

Python Code 24.1.1 RFID

There are two code files for this project. They are respectively under Python2 folder and Python3 folder. Their

functions are the same, but they are not compatible. Code under Python2 folder can only run on Python2.

And code under Python3 folder can only run on Python3.

First observe the project result, and then analyze the code.

1. Use cd command to enter 24.1.1_RFID directory of Python code.

If you use Python2, it is needed to enter Python2 code folder.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/24.1.1_RFID/Python2

If you use Python3, it is needed to enter Python3 code folder.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/24.1.1_RFID/Python3

2. Use python command to execute code "RFID.py".

python RFID.py

After the program is executed, the following contents will be displayed in the terminal:

Here, type the command “quit” to exit the program.

Type command "scan", then the program begins to detect whether there is a card close to the sensing area

of MFRC522 reader. Place an M1-S50 card in the sensing area. The following results indicate that the M1-S50

card has been detected, the UID of which is E6CF5C8EFB (HEX).

When the Card is placed in the sensing area, you can read and write the card through the following command.

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range

is 0-63. As is shown below:

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range

is 0-63. This command is used to read the data of data block with address “blockstart”. For example, using

command read 0 can display the content of data block 0. Using the command read 1 can display the content

of data block 1. As is shown below:

http://www.freenove.com/
mailto:support@freenove.com

261 Chapter 24 RFID

█ www.freenove.com

support@freenove.com █

Command dump is used to display the content of all data blocks in all sectors.

Command <address> <data> is used to write “data" to data block with address “address”. Where the address

range is 0-63 and the data length is 0-16. In the process of writing data to the data block, both the contents

of data block before written and after written will be displayed. For example, if you want to write the string

"Freenove" to the data block with address “1”, you can type the following command.

write 1 Freenove

Command clean <address> is used remove the contents of the data block with address "address". For

example, if you want to clear the contents of the data block 1 that has just been written, you can type the

following command.

clean 1

Command halt is used to quit the selection state of the card.

The following is the program code (python2 code):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

import RPi.GPIO as GPIO

import MFRC522

Create an object of the class MFRC522

mfrc = MFRC522.MFRC522()

def dis_ConmandLine():

 print "RC522>",

def dis_CardID(cardID):

 print "%2X%2X%2X%2X%2X>"%(cardID[0],cardID[1],cardID[2],cardID[3],cardID[4]),

def setup():

 print "Program is starting ... "

 print "Press Ctrl-C to exit."

 pass

def loop():

 while(True):

http://www.freenove.com/
mailto:support@freenove.com

Chapter 24 RFID 262 www.freenove.com █

█ support@freenove.com

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

 dis_ConmandLine()

 inCmd = raw_input()

 print inCmd

 if (inCmd == "scan"):

 print "Scanning ... "

 isScan = True

 while isScan:

 # Scan for cards

 (status,TagType) = mfrc.MFRC522_Request(mfrc.PICC_REQIDL)

 # If a card is found

 if status == mfrc.MI_OK:

 print "Card detected"

 # Get the UID of the card

 (status,uid) = mfrc.MFRC522_Anticoll()

 # If we have the UID, continue

 if status == mfrc.MI_OK:

 print "Card UID: "+ str(map(hex,uid))

 # Select the scanned tag

 if mfrc.MFRC522_SelectTag(uid) == 0:

 print "MFRC522_SelectTag Failed!"

 if cmdloop(uid) < 1 :

 isScan = False

 elif inCmd == "quit":

 destroy()

 exit(0)

 else :

 print "\tUnknown command\n"+"\tscan:scan card and dump\n"+"\tquit:exit

program\n"

def cmdloop(cardID):

 pass

 while(True):

 dis_ConmandLine()

 dis_CardID(cardID)

 inCmd = raw_input()

 cmd = inCmd.split(" ")

 print cmd

 if(cmd[0] == "read"):

 blockAddr = int(cmd[1])

 if((blockAddr<0) or (blockAddr>63)):

 print "Invalid Address!"

 # This is the default key for authentication

 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]

 # Authenticate

http://www.freenove.com/
mailto:support@freenove.com

263 Chapter 24 RFID

█ www.freenove.com

support@freenove.com █

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

 status = mfrc.MFRC522_Auth(mfrc.PICC_AUTHENT1A, blockAddr, key, cardID)

 # Check if authenticated

 if status == mfrc.MI_OK:

 mfrc.MFRC522_Readstr(blockAddr)

 else:

 print "Authentication error"

 return 0

 elif cmd[0] == "dump":

 # This is the default key for authentication

 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]

 mfrc.MFRC522_Dump_Str(key,cardID)

 elif cmd[0] == "write":

 blockAddr = int(cmd[1])

 if((blockAddr<0) or (blockAddr>63)):

 print "Invalid Address!"

 data = [0]*16

 if(len(cmd)<2):

 data = [0]*16

 else:

 data = cmd[2][0:17]

 data = map(ord,data)

 if len(data)<16:

 data+=[0]*(16-len(data))

 # This is the default key for authentication

 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]

 # Authenticate

 status = mfrc.MFRC522_Auth(mfrc.PICC_AUTHENT1A, blockAddr, key, cardID)

 # Check if authenticated

 if status == mfrc.MI_OK:

 print "Before writing , The data in block %d is: "%(blockAddr)

 mfrc.MFRC522_Readstr(blockAddr)

 mfrc.MFRC522_Write(blockAddr, data)

 print "After written , The data in block %d is: "%(blockAddr)

 mfrc.MFRC522_Readstr(blockAddr)

 else:

 print "Authentication error"

 return 0

 elif cmd[0] == "clean":

 blockAddr = int(cmd[1])

 if((blockAddr<0) or (blockAddr>63)):

 print "Invalid Address!"

http://www.freenove.com/
mailto:support@freenove.com

Chapter 24 RFID 264 www.freenove.com █

█ support@freenove.com

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

 data = [0]*16

 # This is the default key for authentication

 key = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]

 # Authenticate

 status = mfrc.MFRC522_Auth(mfrc.PICC_AUTHENT1A, blockAddr, key, cardID)

 # Check if authenticated

 if status == mfrc.MI_OK:

 print "Before cleaning , The data in block %d is: "%(blockAddr)

 mfrc.MFRC522_Readstr(blockAddr)

 mfrc.MFRC522_Write(blockAddr, data)

 print "After cleaned , The data in block %d is: "%(blockAddr)

 mfrc.MFRC522_Readstr(blockAddr)

 else:

 print "Authentication error"

 return 0

 elif cmd[0] == "halt":

 return 0

 else :

 print "Usage:\r\n" "\tread <blockstart>\r\n" "\tdump\r\n" "\thalt\r\n"

"\tclean <blockaddr>\r\n" "\twrite <blockaddr> <data>\r\n"

def destroy():

 GPIO.cleanup()

if __name__ == "__main__":

 setup()

 try:

 loop()

 except KeyboardInterrupt: # Ctrl+C captured, exit

 destroy()

In the code, first create an MFRC522 class object.

 mfrc = MFRC522.MFRC522()

In the function loop, wait for the command input. If command "scan" is received, the function will begin to

detect whether there is a card close to the sensing area. If a card is detected, the card will be selected and

card UID will be acquired. Then enter the function scan_loop (). If command "quit" or "exit" is received, the

program will exit.

 if (inCmd == "scan"):

 print "Scanning ... "

 isScan = True

 while isScan:

 …………

 if cmdloop(uid) < 1 :

 isScan = False

 elif inCmd == "quit":

http://www.freenove.com/
mailto:support@freenove.com

265 Chapter 24 RFID

█ www.freenove.com

support@freenove.com █

 destroy()

 exit(0)

 else :

 print "\tUnknown command\n"+"\tscan:scan card and dump\n"+"\tquit:exit

program\n"

The function cmdloop() will detect command read, write, clean, halt, dump and do the corresponding

processing to each command. The function of each command and the method have been introduced before.

 def cmdloop(cardID):

 pass

 while(True):

 dis_ConmandLine()

 dis_CardID(cardID)

 inCmd = raw_input()

 cmd = inCmd.split(" ")

 print cmd

 if(cmd[0] == "read"):

 …………

 elif cmd[0] == "dump":

 …………

 elif cmd[0] == "write":

 …………

 elif cmd[0] == "clean":

 …………

 elif cmd[0] == "halt":

 return 0

 else :

 print "Usage:\r\n" "\tread <blockstart>\r\n" "\tdump\r\n" "\thalt\r\n"

"\tclean <blockaddr>\r\n" "\twrite <blockaddr> <data>\r\n"

The file "MFRC522.py" contains the associated operation method for the MFRC522. You can open the file to

view all the definitions and functions.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 25 WebIOPi & IOT 266 www.freenove.com █

█ support@freenove.com

Chapter 25 WebIOPi & IOT

In this chapter, we will learn how to use GPIO to control RPi through remote network and how to build a

WebIOPi service on the RPi.

“IOT” is Internet of Things. The development of IOT will greatly change our habits and make our lives more

convenient and efficient.

“WebIOPi” is the Raspberry Pi Internet of Things Framework.After configuration for WebIOPi on your RPi is

completed, you can use web browser on mobile phones, computers and other equipments to control, debug

and use RPi GPIO conveniently. It also supports many commonly used communication protocol, such as serial,

I2C, SPI, etc., and a lot of equipments, like AD/DA converter pcf8591 used before and so on. Then on this

basis, through adding some peripheral circuits, you can create your own smart home.

For more details about WebIOPi, please refer to: http://webiopi.trouch.com/

Project 25.1 Remote LED

In this experiment, we need build a WebIOPi service, and then control the RPi GPIO to control a LED through

Web browser of phone or PC.

Component List

Raspberry Pi 3B x1

GPIO Extension Board & Wire x1

BreadBoard x1

LED x1

Resistor 220Ω x1

Jumper M/M x2

http://www.freenove.com/
mailto:support@freenove.com
http://webiopi.trouch.com/

267 Chapter 25 WebIOPi & IOT

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

Chapter 25 WebIOPi & IOT 268 www.freenove.com █

█ support@freenove.com

Build WebIOPi Service Framework

The following is the key part of this chapter. The installation steps refer to WebIOPi official. And you also can

directly refer to the official installation steps. The latest version (until 2016-6-27) WebIOPi is 0.7.1. So, you

may have some problems in use. We will explain these problems and provide the solution in the following

installation steps.

Here are the steps to build WebIOPi:

Installation

1. visit http://webiopi.trouch.com/DOWNLOADS.html to get the latest installation package. You can use the

following command to obtain.

wget http://sourceforge.net/projects/webiopi/files/WebIOPi-0.7.1.tar.gz

2. Extract the package and generate a folder named "WebIOPi-0.7.1". Then enter the folder.

tar xvzf WebIOPi.tar.gz

cd WebIOPi-0.7.1

3. Patch for Raspberry Pi B+, 2B, 3B, 3B+.

wget https://raw.githubusercontent.com/doublebind/raspi/master/webiopi-pi2bplus.patch

patch -p1 -i webiopi-pi2bplus.patch

4. Run setup.sh to start the installation, and the process need a period of time to wait.

sudo ./setup.sh

Run

After the installation is completed, you can use the webiopi command to start running.

$ sudo webiopi [-h] [-c config] [-l log] [-s script] [-d] [port]

 Options:

 -h, --help Display this help

 -c, --config file Load config from file

 -l, --log file Log to file

 -s, --script file Load script from file

 -d, --debug Enable DEBUG

 Arguments:

 port Port to bind the HTTP Server

For instance, to start with verbose output and the default config file :

sudo webiopi -d -c /etc/webiopi/config

The Port is 8000 in default.

Until now, WebIOPi has been launched, and you can press "Ctrl+C" to terminate service.

Access WebIOPi over local network

Under the same network, use mobile phone or PC browser to open your RPi IP address, and add port number

like 8000. For example, my raspberry pi IP address is 192.168.1.109. Then, in the browser, should input:

http://192.168.1.109:8000/

Default user is "webiopi" and password is "raspberry"。

Then, enter the main control interface:

http://www.freenove.com/
mailto:support@freenove.com
http://webiopi.trouch.com/DOWNLOADS.html
http://sourceforge.net/projects/webiopi/files/WebIOPi-0.7.1.tar.gz/download
https://raw.githubusercontent.com/doublebind/raspi/master/webiopi-pi2bplus.patch
http://192.168.1.109:8000/

269 Chapter 25 WebIOPi & IOT

█ www.freenove.com

support@freenove.com █

Click on GPIO Header to enter the GPIO control interface.

http://www.freenove.com/
mailto:support@freenove.com

Chapter 25 WebIOPi & IOT 270 www.freenove.com █

█ support@freenove.com

Control methods：

 Click/Tap the OUT/IN button to change GPIO direction.

 Click/Tap pins to change the GPIO output state.

Completed

According to the circuit we build, set GPIO17 to OUT, then click Header11 to control the LED.

About WebIOPi

The reason for changing file in the configuration process is that the model of new generation of RPi CPU is

different form old one, which result in some of the issues during using.

WebIOPi has not provide corresponding installation package for latest RPi timely. Therefore, there are two

changes in the configuration, and some BUG may exist to cause some problems to WebIOPi function. We

look forward to that the author of WebIOPi to provide a complete set of the latest version of installation

package to fit with RPi. WebIOPi can achieve far more than this, so we also look forward to learning and

exploring with the funs.

http://www.freenove.com/
mailto:support@freenove.com

271 What's next?

█ www.freenove.com

support@freenove.com █

What's next?

Thanks for your reading.

This tutorial is all over here. If you find any mistakes, missions or you have other ideas and questions about

contents of this tutorial or the kit and etc, please feel free to contact us, and we will check and correct it as

soon as possible.

If you want to learn more about Arduino, Raspberry Pi, smart cars, robots and other interesting products in

science and technology, please continue to focus on our website. We will continue to launch cost-effective,

innovative and exciting products.

Thank you again for choosing Freenove products.

http://www.freenove.com/
mailto:support@freenove.com

	Contents
	Preface
	Raspberry Pi
	Install the System
	Component List
	Required Components

	Optional Components
	Required Accessories for Monitor
	Required Accessories for Remote Desktop

	Raspbian System
	Tool and System image
	Software Tool
	Selecting System

	Write System to Micro SD Card
	Start Raspberry Pi

	Remote desktop & VNC
	SSH
	Remote Desktop Connection & xrdp
	Login to Windows remote desktop
	VNC Viewer & VNC
	Wi-Fi

	Chapter 0 Preparation
	Install WiringPi
	WiringPi Installation Steps

	Obtain the Project Code
	Python2 & Python3
	Code Editor
	vi, nano, Geany
	Summary

	GPIO
	BCM GPIO Numbering
	PHYSICAL Numbering
	WiringPi GPIO Numbering

	GPIO Extension Board
	Breadboard Power Module
	Next

	Chapter 1 LED
	Project 1.1 Blink
	Component List
	Component knowledge
	LED
	Resistor

	Circuit
	Code
	C Code 1.1.1 Blink
	Python Code 1.1.1 Blink

	Chapter 2 Button & LED
	Project 2.1 Button & LED
	Component List
	Component knowledge
	Push button

	Circuit
	Code
	C Code 2.1.1 ButtonLED
	Python Code 2.1.1 ButtonLED

	Project 2.2 MINI table lamp
	Debounce for Push Button
	Code
	C Code 2.2.1 Tablelamp
	Python Code 2.2.1 Tablelamp

	Chapter 3 LEDBar Graph
	Project 3.1 Flowing Water Light
	Component List
	Component knowledge
	LED bar graph

	Circuit
	Code
	C Code 3.1.1 LightWater
	Python Code 3.1.1 LightWater

	Chapter 4 Analog & PWM
	Project 4.1 Breathing LED
	Component List
	Circuit knowledge
	Analog & Digital
	PWM

	Circuit
	Code
	C Code 4.1.1 BreathingLED
	Python Code 4.1.1 BreathingLED

	Chapter 5 RGBLED
	Project 5.1 Colorful LED
	Component List
	Circuit
	Code
	C Code 5.1.1 ColorfulLED
	Python Code 5.1.1 ColorfulLED

	Chapter 6 Buzzer
	Project 6.1 Doorbell
	Component List
	Component knowledge
	Buzzer
	Transistor

	Circuit
	Code
	C Code 6.1.1 Doorbell
	Python Code 6.1.1 Doorbell

	Project 6.2 Alertor
	Code
	C Code 6.2.1 Alertor
	Python Code 6.2.1 Alertor

	Chapter 7 PCF8591
	Project 7.1 Read the Voltage of Potentiometer
	Component List
	Circuit knowledge
	ADC
	DAC

	Component knowledge
	Potentiometer
	Rotary potentiometer
	PCF8591
	I2C communication

	Circuit
	Configure I2C
	Enable I2C
	Install I2C-Tools

	Code
	C Code 7.1.1 pcf8591
	Python Code 7.1.1 pcf8591

	Chapter 8 Potentiometer & LED
	Project 8.1 Soft Light
	Component List
	Circuit
	Code
	C Code 8.1.1 Softlight
	Python Code 8.1.1 Softlight

	Chapter 9 Potentiometer & RGBLED
	Project 9.1 Colorful Light
	Component List
	Circuit
	Code
	C Code 9.1.1 Colorful Softlight
	Python Code 9.1.1 ColorfulSoftlight

	Chapter 10 Photoresistor & LED
	Project 10.1 NightLamp
	Component List
	Component knowledge
	Photoresistor

	Circuit
	Code
	C Code 10.1.1 Nightlamp
	Python Code 10.1.1 Nightlamp

	Chapter 11 Thermistor
	Project 11.1 Thermometer
	Component List
	Component knowledge
	Thermistor

	Circuit
	Code
	C Code 11.1.1 Thermometer
	Python Code 11.1.1 Thermometer

	Chapter 12 Joystick
	Project 12.1 Joystick
	Component List
	Component knowledge
	Joystick

	Circuit
	Code
	C Code 12.1.1 Joystick
	Python Code 12.1.1 Joystick

	Chapter 13 Motor & Driver
	Project 13.1 Control Motor with Potentiometer
	Component List
	Component knowledge
	Motor
	L293D

	Circuit
	Code
	C Code 13.1.1 Motor
	Python Code 13.1.1 Motor

	Chapter 14 Relay & Motor
	Project 14.1.1 Relay & Motor
	Component List
	Component knowledge
	Relay
	Inductor

	Circuit
	Code
	C Code 14.1.1 Relay
	Python Code 14.1.1 Relay

	Chapter 15 Servo
	Project 15.1 Servo Sweep
	Component List
	Component knowledge
	Servo

	Circuit
	Code
	C Code 15.1.1 Sweep
	Python Code 15.1.1 Sweep

	Chapter 16 Stepping Motor
	Project 16.1 Stepping Motor
	Component List
	Component knowledge
	Stepping Motor
	ULN2003 Stepping motor driver

	Circuit
	Code
	C Code 16.1.1 SteppingMotor
	Python Code 16.1.1 SteppingMotor

	Chapter 17 74HC595 & LEDBar Graph
	Project 17.1 Flowing Water Light
	Component List
	Component knowledge
	74HC595

	Circuit
	Code
	C Code 17.1.1 LightWater02
	Python Code 17.1.1 LightWater02

	Chapter 18 74HC595 & 7-segment display.
	Project 18.1 7-segment display.
	Component List
	Component knowledge
	7-segment display

	Circuit
	Code
	C Code 18.1.1 SevenSegmentDisplay
	Python Code 18.1.1 SevenSegmentDisplay

	Project 18.2 4-Digit 7-segment display
	Component List
	Component knowledge
	4 Digit 7-Segment Display

	Circuit
	Code
	C Code 18.2.1 StopWatch
	Python Code 18.2.1 StopWatch

	Chapter 19 74HC595 & LED Matrix
	Project 19.1 LED Matrix
	Component List
	Component knowledge
	LED matrix

	Circuit
	Code
	C Code 19.1.1 LEDMatrix
	Python Code 19.1.1 LEDMatrix

	Chapter 20 LCD1602
	Project 20.1 I2C LCD1602
	Component List
	Circuit
	Code
	C Code 20.1.1 I2CLCD1602
	Python Code 20.1.1 I2CLCD1602

	Chapter 21 Hygrothermograph DHT11
	Project 21.1 Hygrothermograph
	Component List
	Component knowledge
	Circuit
	Code
	C Code 21.1.1 DHT11
	Python Code 21.1.1 DHT11

	Chapter 22 Matrix Keypad
	Project 22.1 Matrix Keypad
	Component List
	Component knowledge
	4x4 Matrix Keypad

	Circuit
	Code
	C Code 22.1.1 MatrixKeypad
	Python Code 22.1.1 MatrixKeypad

	Chapter 23 Ultrasonic Ranging
	Project 23.1 Ultrasonic Ranging
	Component List
	Component Knowledge
	Circuit
	Code
	C Code 23.1.1 UltrasonicRanging
	Python Code 23.1.1 UltrasonicRanging

	Chapter 24 RFID
	Project 24.1 RFID
	Component List
	Component Knowledge
	RFID
	MFRC522
	Mifare1 S50 Card

	Circuit
	Configure SPI
	Enable SPI
	Install Python module SPI-Py

	Code
	C Code 24.1.1 RFID
	Python Code 24.1.1 RFID

	Chapter 25 WebIOPi & IOT
	Project 25.1 Remote LED
	Component List
	Circuit
	Build WebIOPi Service Framework
	Installation
	Run
	Access WebIOPi over local network
	Completed

	About WebIOPi

	What's next?

