\O/
/ e ™
FREENOVE

FREE YOUR INNOVATION

Freenove is an open-source electronics platform.
www.freenove.com



When you purchase or use Freenove RFID Starter Kit for Raspberry Pi, please note the following:

® This product contains small parts. Swallowing or improper operation can cause serious infections and
death. Seek immediate medical attention when the accident happened.

® Do not allow children under 3 years old to play with or near this product. Please place this product in
where children under 3 years of age cannot reach.

® Do not allow children lack of ability of safe to use this product alone without parental care.

® Never use this product and its parts near any AC electrical outlet or other circuits to avoid the potential
risk of electric shock.

® Never use this product near any liquid and fire.

® Keep conductive materials away from this product.

® Never store or use this product in any extreme environments such as extreme hot or cold, high humidity
and etc.

® Remember to turn off circuits when not in use this product or when left.

® Do not touch any moving and rotating parts of this product while they are operating.

® Some parts of this product may become warm to touch when used in certain circuit designs. This is

normal. Improper operation may cause excessively overheating.
® Using this product not in accordance with the specification may cause damage to the product.

Freenove is an open-source electronics platform. Freenove is committed to helping customer quickly realize
the creative idea and product prototypes, making it easy to get started for enthusiasts of programing and
electronics and launching innovative open source products. Our services include:

Electronic components and modules

Learning kits for Arduino

Learning kits for Raspberry Pi

Learning kits for Technology

Robot kits

Auxiliary tools for creations

Our code and circuit are open source. You can obtain the details and the latest information through visiting
the following web sites:

http://www.freenove.com

https://github.com/freenove

Your comments and suggestions are warmly welcomed, and please send them to the following email address:
support@freenove.com



http://www.freenove.com/
https://github.com/freenove
mailto:support@freenove.com

References

You can download the sketches and references used in this product in the following websites:
http://www.freenove.com

https://github.com/freenove

If you have any difficulties, you can send email to technical support for help.

The references for this product is named Freenove RFID Starter Kit for Raspberry Pi, which includes the
following folders and files:

® Datasheet  Datasheet of electronic components and modules

® Code Code for project

® Readme.txt Instructions

Support

Freenove provides free and quick technical support, including but not limited to:
® Quality problems of products

Problems in using products

Questions for learning and technology

Opinions and suggestions

Ideas and thoughts

Please send email to:
support@freenove.com
On working day, we usually reply to you within 24 hours.

Copyright

Freenove reserves all rights to this book. No copies or plagiarizations are allowed for the purpose of
commercial use.

The code and circuit involved in this product are released as Creative Commons Attribution ShareAlike 3.0.
This means you can use them on your own derived works, in part or completely, as long as you also adopt
the same license. Freenove brand and Freenove logo are copyright of Freenove Creative Technology Co., Ltd
and cannot be used without formal permission.


http://www.freenove.com/
https://github.com/freenove
mailto:support@freenove.com




B www.freenove.com Contents _

CONTENTS ..o, |
Preface ..., 1
RASPDEITY Pl e, 2
Install the SYStem ..., 8
COMPONENT LIST ..ottt ns et s s 8
OPLIONAI COMPONENTS......ovieieceie ettt 10
RASIPDIAN SYSTEIMN ..ottt e 12
REMOLE AESKIOP & VINC ..ot 15
Chapter O Preparation ..o, 25
INSTAI WITINGPI oottt 25
ODLaAIN the PrOJECT COUE......ceiiiieieeee e 27
PYTNONZ & PYLNONI ...ttt 28
€O EQITON ittt s 30
GPIO et 35
GPIO EXIENSION BOGIM ...ttt 39
Breadboard POWET IMOGUIE ...ttt 40
INEXE .ttt s s8R R8RSR R RS Rt 41
Chapter L LED .o, 42
PPOJECT 1.1 BIINK ettt sttt ettt 42
Chapter 2 Button & LED ..., 50
Project 2.1 BULTON & LED ...ttt sttt naaneens 50
Project 2.2 MINI LADIE 1AM ..ottt raaneens 55
Chapter 3 LEDBar Graph ..., 61
Project 3.1 FIOWING WaAEE LIGNT ...ttt st 61
Chapter 4 Analog & PWM ..., 66
Project 4.1 Breathing LED ...ttt naaneens 66
Chapter 5 RGBLED ..., 72
ProjeCt 5.1 COIOMUI LED ...ttt saen s naaneens 72

Chapter 6 BUZZEr ..., /8

T T=To1 a0t I T Yo T4 o= OO 78


http://www.freenove.com/

n Contents www.freenove.com .

PIOJECE 8.2 ALBITOT w...ooeeeeeee ettt ettt ettt ettt et an et sen s 84
Chapter 7 PCF8591 ..., 89
Project 7.1 Read the Voltage Of POtENTIOMELE ...t 89
Chapter 8 Potentiometer & LED ......ccovevevevevieee, 100
PrOJECE 8.1 SOTL LIGNT. oottt s ettt en et an s s enansanas 100
Chapter 9 Potentiometer & RGBLED...................... 105
Project 9.1 COlOr Ul LIGNT ...ttt ettt enan s 105
Chapter 10 Photoresistor & LED.........c.cccooveveveneaen, 112
Project 10.1 NIGNTLAMID oottt ettt en ettt an s s enan s 112
Chapter 11 Thermistor ..o, 119
ProjeCt 111 TREIMOMIEBLET ...ttt ettt et en et enssaesenansesans 119
Chapter 12 JOYSHICK ..o, 126
PrOJECE 12,1 JOYSTICK ..ottt ettt et n et en et ne st anssaesenenaenans 126
Chapter 13 Motor & DIIVEr ..., 133
Project 13.1 Control Motor With POTENTIOMETET ........cc.ciiiicse et 133
Chapter 14 Relay & MOtOr ..o, 144
Project 14.1.1 REIAY & IMOTOT ...ttt 144
Chapter 15 Servo ..., 152
PrOJECT 15.1 SEIVO SWEE .....iuiiiiiiiieeieietet ettt bbb bbb bbbttt s 152
Chapter 16 Stepping Motor ..., 161
Project 16.1 STEPPING MOLOT ....oiiiiiiiciiei ettt bbb bbb es 161
Chapter 17 74HC595 & LEDBar Graph................... 172
Project 17.1 FIOWING WaLer LIGNT.......cccoiiiiicic ettt 172

Chapter 18 74HC595 & 7-segment display.......... 180

Project 18.1 7-S€gMENT AISPIAY. ...ccviviiiiiiiiiciciiei ettt bbb 180
Project 18.2 4-Digit 7-S€gMENT AISPIAY .....ccviviiiiieiiiiieiie ettt 187
Chapter 19 74HC595 & LED Matrix.......cccccocuee..... 200
ProjeCt 19.1 LED MAATIIX c..iviiiiiiieiieiiiet ettt bbb bbbt ns 200

Chapter 20 LCD1602 ... 212

Project 20.1 12C LCDLO0Z.........ccierieiiieeieieeieee ettt 212


http://www.freenove.com/

B www freenove.com Contents _

Chapter 21 Hygrothermograph DHT11 ............... 222
Project 21.1 HygrothermMOGraph .. ...ttt 222
Chapter 22 Matrix Keypad .......c.ccooooeoviieeeeceeeee, 229
Project 22.1 MatriX KEYPAA ...ttt ettt enansanas 229
Chapter 23 Ultrasonic Ranging ......ccccocceevveeveenane. 239
Project 23.1 UIIraSONIC RANGING .....c.vcuieiceeeece ettt ssnansanans 239
Chapter 24 RFID ..o, 247
PIOJECE 24. 1 RFID ...ttt ettt ettt en ettt enesaensnansanans 247
Chapter 25 WeblOPI & 1OT ..., 266
Project 25.1 REMOTE LED ...ttt ettt senan s 266

M Nat S NBXE? et 271


http://www.freenove.com/




B www freenove.com Preface

Preface

If you want to become a maker, you may have heard of Raspberry Pi or Arduino before. If not, it doesn't
matter. Through referencing this tutorial, you can be relaxed in using Raspberry Pi to create dozens of
electronical interesting projects, and gradually realize the fun of using Raspberry Pi to complete creative works.

Raspberry Pi and Arduino have a lot of fans in the world. They are keen to exploration, innovation and DIY
and they contributed a great number of high-quality open source code, circuit and rich knowledge base. So
we can realize our own creativity more efficiently by using these free resource. Of course, you can also
contribute your own strength to the resource.

Raspberry Pi, different from Arduino, is more like a control center with a complete operating system, which
can deal with more tasks at the same time. Of course, you can also combine the advantages of them to make
something creative.

Usually, a Raspberry Pi project consists of code and circuit. If you are familiar with computer language and
very interested in the electronic module. Then this tutorial is very suitable for you. It will, from easy to difficult,
explain the Raspberry Pi programming knowledge, the use of various types of electronic components and
sensor modules and their operation principle. And we assign scene applications for most of the module.

We provide code of both C and Python language versions for each project, so, whether you are a C language
user or a Python language user, you are able to easily grasp the code in this tutorial. The supporting kit,
contains all the electronic components and modules needed to complete these projects. After completing all
projects in this tutorial, you can also use these components and modules to achieve your own creativity, like
smart home, smart car and robot.

Additionally, if you have any difficulties or questions about this tutorial and the kit, you can always ask us for
quick and free technical support.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Raspberry Pi www.freenove.com .

Raspberry Pi

Raspberry Pi (called RPi, RPI, RasPi, the text these words will be used alternately later), a micro-computer with
size of a card, quickly swept the world since its debut. It is widely used in desktop workstation, media center,
smart home, robots, and even the servers, etc. It can do almost anything, which continues to attract fans to
explore it. Raspberry Pi used to be running in Linux system and along with the release of windows 10 loT. We
can also run it in Windows. Raspberry Pi (with interfaces USB, network, HDMI, camera, audio, display and
GPIO), as a microcomputer, can be running in command line mode and desktop system mode. Additionally,
it is easy to operate just like Arduino, and you can even directly operate the GPIO of CPU.

So far, Raspberry Pi has developed to the third generation. Changes in versions are accompanied by increase
and upgrades in hardware. A type and B type, the first generation of products, have been stopped due to
various reasons. Other versions are popular and active and the most important is that they are consistent in

the order and number of pins, which makes the compatibility of peripheral devices greatly enhanced between
different versions.

Here are some practicality pictures and model diagrams of Raspberry Pi:
Practicality picture of Raspberry Pi 3 Model B+: Model diagram of Raspberry Pi 3 Model B+:

nou

13NY3HL3

o =
3 B
3 -

SI (CAMERA)

+
[1a]
T
88
=
ey
54
£3
W
85
£o

U\V'Id.S\CIJ IS0

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Raspberry Pi

Practicality picture of Raspberry Pi 3 Model B: Model diagram of Raspberry Pi 3 Model B:
| | n A oy

L3NY3HL3

CSI (CAMERA)

Model diagram of Raspberry Pi 2 Model B:

I LN

13NY3HL3

q O
H -

CS| (CAMERA)
|

Raspberry Pi 2 Model B
© Raspberry Pi 2014

(Av1dsSial IS
ERERRNEN]

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Raspberry Pi

www.freenove.com [l

3 avdsia \
FEEERRERRRNIRNR

Model diagram of Raspberry Pi 1 Model B+:
\ ! Y f Iy

13NY3HL3

o

e l 5
E] -

< -

CS| (CAMERA)

o
-
>
+
m
]
o
k]
-
o
>
E
o
Q2
Qo
(7]
@
e

<
-
o
~N
o
g
@
°
a
@
@
14
@

GPIO

(Av1dsSial IS
ERERRNEN]

y Pi.2014

e ®CER

® = S .
L] TR IATIAIIAI .

3!|E‘[—
owoewlol -

+
< <
T =
(=]
B
=i
oz
>0
E o
[

3%
2
o

(Avidsia) isa
1l (111

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B wvww.freenove.com

Raspberry Pi

Practicality picture of Raspberry Pi Zero W

Model diagram of Raspberry Pi Zero W:

B

Raspberry Pi Zero W

o
=4
@

N

r
E
@

a
[-3
@
o]

13

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

m Raspberry Pi www.freenove.com .

Hardware interface diagram of RPi 3B+/3B/2B/1B+ is shown below:

GPIO
Raspb
Connector @ F

USB
Connector

Display

Connector

1L
DSI (DISPLAY)

Ethernet
Connector

HDNMI
T,

Power

(Y¥3WVYD) ISD
ETHERNET

Connector

Audio
Connector

Camera

Connector Connector

Hardware interface diagram of RPi A+ is shown below:

GPIO 'I‘Jﬁﬁiﬁiilllllflﬁﬁﬁﬁ

Connector Raspberry Pi Model A+
© Raspberry Pi 2014

USB
Connector

Display

Connector

(vyanvo) IS0

Power

Connector

HDMI
Connector

Audio
Connector

Camera

Connector

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Raspberry Pi

Hardware interface diagram of RPi Zero/Zero W is shown below:

GPIO
Connector

Raspberry Pi Zero W

Camera
Connector

Power

HDMI
Connector

Connector Connector

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

m Install the System www.freenove.com [l

Install the System

Firstly, install a system for your RPi.

Component List

Required Components

5V/2.5A Power Adapter. Different versions of

Any Raspberry Pi
§ Raspberry Pi have different power requirements.

.....

Micro USB Cable x1 Micro SD Card(TF Card)x1, Card Reader x1
| N
g TransFlash L—:'—

mge - w2
1668 'f-—
J

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Install the System _

Power requirement of different versions of Raspberry Pi is shown in following table:

Recommended Maximum total USB Typical bare-board active
PSU current peripheral current draw current consumption
capacity
Raspberry Pi 700mA 500mA 200mA
Model A
Raspberry Pi 1.2A 500mA 500mA
Model B
Raspberry Pi 700mA 500mA 180mA
Model A+
Raspberry Pi 1.8A 600mA/1.2A (switchable) 330mA
Model B+
Raspberry Pi 2 1.8A 600mA/1.2A (switchable) 350mA
Model B
Raspberry Pi 3 2.5A 1.2A 400mA
Model B
Raspberry Pi 3 2.5A
Model B+
Raspberry Pi 1.2A Limited by PSU, board, and = 150mA
Zero W connector ratings only.
Raspberry Pi 1.2A Limited by PSU, board, and  100mA
Zero connector ratings only

For more details, please refer to https://www.raspberrypi.org/help/fags/#powerReqgs

In addition, RPi also needs a network cable used to connect it to wide area network.

All of these components are necessary. Among them, the power supply is required at least 5V/2.5A, because
lack of power supply will lead to many abnormal problems, even damage to your RPi. So power supply with
5V/2.5A is highly recommend. SD Card Micro (recommended capacity 16GB or more) is a hard drive for RP;,
which is used to store the system and personal files. In later projects, the components list with a RPi will
contains these required components, using only RPi as a representative rather than presenting details.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com
https://www.raspberrypi.org/help/faqs/#powerReqs

Install the System www.freenove.com [l

Optional Components

Under normal circumstances, there are two ways to login to Raspberry Pi: using independent monitor, or
remote desktop to share a monitor with your PC.

Required Accessories for Monitor

If you want to use independent monitor, mouse and keyboard, you also need the following accessories.
1.Display with HDMI interface
2.Mouse and Keyboard with USB interface

As to Pi Zero and Pi Zero W, you also need the following accessories.

1. Mini-HDMI to HDMI converter&wire.

2. Micro-USB to USB-A Receptacles converter&wire (Micro USB OTG wire).
3. USB HUB.

4. USB transferring to Ethernet interface or USB Wi-Fi receiver.

For different Raspberry Pi, the optional items are slightly different. But all of their aims are to convert the
special interface to standard interface of standard Raspberry Pi.

Yes Yes Yes Yes Yes

Monitor
Mouse Yes Yes Yes Yes Yes
Keyboard Yes Yes Yes Yes Yes
Mini-HDMI to HDMI

. Yes Yes No No No
converter&wire
Micro-USB to USB-A
Receptacles

. Yes Yes No No No
converter&wire
(Micro USB OTG wire)
USB HUB Yes Yes Yes No No
USB transferring to select one optional select one Internal
Ethernet interface from two or > from two or Integration Internal
USB Wi-Fi receiver select two Internal select two tional Integration

optiona
from two Integration from two P

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Install the System

Required Accessories for Remote Desktop

If you don't have an independent monitor, or you want to use a remote desktop, first you need to login to
Raspberry Pi through SSH, then open the VNC or RDP service. So you need the following accessories.

Micro-USB to USB-A Yes

Receptacles

converter&wire (Micro

USB OTG wire)

USB transferring to Yes Yes Yes
Ethernet interface

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Install the System www.freenove.com [l

Raspbian System

Tool and System image

Software Tool
A tool Disk Imager Win32 is required to write system. You can download and install it through visiting the
web site: https://sourceforge.net/projects/win32diskimager/

Selecting System

Visit RPi official website (https://www.RaspberryPi.org/), click “Downloads” and choose to download
“RASPBIAN". RASPBIAN supported by RPI is an operating system based on Linux, which contains a number of
contents required for RPi. We recommended RASPBIAN system to beginners. All projects in this tutorial are
operated under the RASPBIAN system.

7
X DOWNLOADS COMMUNITY HELP FORUMS EDUCATION Q

DOWNLOADS

Raspbian is the Foundation’s official supported Operating System. Download it

e

here, or use NOOBS, our easy installer for Raspbian and more.

RASPBIAN

After download, extract file with suffix (.img). Preparation is ready to start making the system.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com
https://sourceforge.net/projects/win32diskimager/
https://www.raspberrypi.org/

B www.freenove.com Install the System

Write System to Micro SD Card

First, put your Micro SD card into card reader and connect it to USB port of PC. Then open Win32 disk imager,
choose the correct letter of your Micro SD Card (here is “J"), open the extracted “.img” file and then click the
"Write".

[ Step2. open the extracted “.img” file Stepl. choose the correct letter ]

2 Win32 Disk Imager
Image File
|—1|:|—ra5p]:-ia.n—jessiefEUlG—UE—IU—rasp'bia.n—_'iessie. img\lﬁ [T:%

Copy | [ | MDE Hash:

Progress

Y¥erzsion: 0.9.5 Cancel Read Write Exit

[ Step3. Click Write to write the system

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Install the System www.freenove.com [l

Start Raspberry Pi

After the system is written successfully, take out Micro SD Card and put it into the card slot of RPi. Then
connect RPi to screen through the HDMI, to mouse and keyboard through the USB port, to network cable
through the network card interface and to the power supply. Then your RPi starts initially. Later, you need to
enter the user name and password to login. The default user name: pi; password: raspberry. Enter and login.
After login, you can enter the following interface.

$S-H%0

E

Now, you have successfully installed the RASPBIAN operating system for your RPi.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Install the System

Remote desktop & VNC

If you don't have a spare display, mouse and keyboard for your RPi, you can use a remote desktop to share
a display, keyboard, and mouse with your PC. Below is how to use remote desktop to control RPi under the
Windows operating system.

Under windows, Raspberry Pi can be generally accessed remotely through two applications. The first one is
the windows built-in application remote desktop, which corresponds to the Raspberry Pi xrdp service. The
second one is the free application VNC Viewer, which corresponds to the VNC interface of Raspberry Pi. Each
way has its own advantages. You can choose either one or two.

Remote Desktop Connection Xrdp
VNC Viewer VNC

VNC Viewer can not only run under Windows, but also under system MAC, Linux, IOS, Android and so on.

SSH

Under previous Raspbian system, SSH is opened by default. Under the latest version of Raspbian system, it is
closed by default. So you need to open it first.

Method: after the system is written. Create a folder named “ssh” under generated boot disk, then the SSH
connection will be opened.

And then, download the tool software Putty. Its official address: http://www.putty.org/

Or download it here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com
http://www.putty.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Install the System

www.freenove.com [l

Then use cable to connect your RP

i to the routers of your PC LAN, to ensure your PC and your RPi in the same

LAN. Then put the system TF card prepared before into the slot of the RPi and turn on the power supply
waiting for starting RPi. Later, enter control terminal of the router to inquiry IP address named “raspberry pi”.

For example, | have inquired to my
select SSH, and then click "OPEN",

% PuTTY Configuration

RPi IP address, and it is “192.168.1.108". Then open Putty, enter the address,
as shown below:

>
Categony:
= Sfa-ssinn | Basic options for your PuTTY session |
L I_.ogging Specify the destination you warnt to connect to
Stepl: enter = Teminal Step2:
i Kevhoard Host Mame (or [P address) Port
the IP address 5 I'I |1521EE1 108 | 22 Select SSH

B 168.1.
- Features Connection type:

=) Window (OJFaw () Telnet () Rlogin @) SSH () Seal
.Pnppea!ance Load, save or delete a stored session
- Behaviour
.. Translation Saved Sessions
- Selection | |
- Colours :

Default Settings

= Connection =
- Data Save
- Proxy
- Telnet Delete
- Rlogin

- S5H
- Senal Close window on exit: Step3:
(O Aways (O Never (8 Only on clean exit Click “OPEN"
About Cpen Cancel

There will appear a security warning at first login. Just click “YES".

PUTTY Security Alert

B support@freenove.com

WARMING - POTENTIAL SECURITY BREACH!

The server's host key does not match the one PuTTY has
cached in the registry. This means that either the

server administrator has changed the host key, or you
have actually connected to another computer pretending
to be the server,

The new rsa2 key fingerprint is:

ssh-rsa 2048 7ae1:50:ba:dc:01:87:1bia3:f9:d2:d4:1 2:d6:ferab
If you were expecting this change and trust the new key,
hit Yes to update PuTTY's cache and continue connecting.
If you want to carry on connecting but without updating
the cache, hit No.

If you want to abandon the connection completely, hit
Cancel. Hitting Cancel is the ONLY guaranteed safe
choice.


http://www.freenove.com/
mailto:support@freenove.com

Then there will be a login interface (RPi default user name: pi; the password: raspberry). When you enter the
password, there will be no display on the screen. This is normal. After the correct output, press “Enter” to

confirm.

E2 PuTTY (inacti

Then enter the command line of RPi, which means that you have successfully login to RPi command line
mode.

= password:

programs 3 lude Jith ware;
exact distribution terms for each program are described in the
individual file=s in /fusr/share/doc/*/copyright.

Debian ! ABSCLUTELY NO WABREAWNTY, to the extent
permitted by applicable law.

La=st login: Tue May 10 23:51:04 2016

pifraspberrypi: I



http://www.freenove.com/
mailto:support@freenove.com

If you want to use built-in Remote Desktop Connection under Windows, you need install xrdp service on
Raspberry Pi.

Next, install a xrdp service, an open source remote desktop protocol(rdp) server, for RPi. Type the following
command, then press enter to confirm:
sudo apt-get install xrdp

Later, the installation starts.

pi@raspberrypi: ~ — O x

Enter "Y", press key “Enter” to confirm.
After the installation is completed, you can use Windows remote desktop applications to login to your RPi.


http://www.freenove.com/
mailto:support@freenove.com

Use "WIN+R" or search function, open the remote desktop application "mstsc.exe" under Windows, enter the
IP address of RPi and then click “Connect”.

z Remote Desktop Connection =
| Remote Desktop
1>¢ Connection

Computer; | v
Username: Mone specified

ou will be asked for credentials when you connect.

¥ Show Optio... Connect Help

Later, there will be xrdp login screen. Enter the user name and password of RPi (RPi default user name: pi;
password: raspberry) and click “OK”,

Module |sesman-Xvne |

Lsername |pi

password [#ereieterreteic]

(] | Cance|| Help



http://www.freenove.com/
mailto:support@freenove.com

Install the System www.freenove.com [l

Later, you can enter the RPi desktop system.
8 @B

Here, you have successfully used the remote desktop login to RPi.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Install the System

VNC Viewer & VNC

Type the following command. And select 5 Interfacing Options=>P3 VNC =>Yes=>OK->Finish. Here Raspberry
Pi may need be restarted, and choose ok. Then open VNC interface.

support@freenove.com Il


http://www.freenove.com/
mailto:support@freenove.com

Install the System www.freenove.com [l

Then download and install VNC Viewer by click following link:
https:.//www.realvnc.com/en/connect/download/viewer/windows/

After installation is completed, open VNC Viewer. And click File = New Connection. Then the interface is
shown below.

& raspberry pi - Properties - O X

General Qptions Expert

VNC Server: |192.168.1.117 |

Name: |raspberry pil |

Labels

To nest labels, separate names with a forward slash (/]

Enter a label name, or press Down to apply existing labels |

Security

Encryption: Let VNC Server choose V|

[#] Authenticate using single sign-on [S50) if possible

Authenticate using a smartcard or certificate store if
possible

Privacy
Update desktop preview automatically

Enter ip address of your Raspberry Pi and fill in a Name. And click OK.
Then on the VNC Viewer panel, double-click new connection you just created, and the following dialog box

pops up.

m Authentication b4

VMC Server: 192.168.1.117:5900

Username: |pi |

Password: |-.-.-.-.. |

Remember password

Catchphrase: Sister logo octopus. Giraffe Gloria time.

Signature:  8b-6b-40-50-f6-9d-8b-f8

Enter username: pi and Password: raspberry. And click OK.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com
https://www.realvnc.com/en/connect/download/viewer/windows/

B www.freenove.com Install the System

spherrypi] - VNC Viewer - o X

> s d @ 41y Waming 2 T ak|0223 °

ord for the 'pi’ user

the 'pi’ user and run Ri

<

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer

If you think resolution ratio is not OK, you can set a proper resolution ratio on set interface of Raspberry Pi.
sudo raspi-config

Select 7 Advanced Options—=>A5 Resolution—=>proper resolution ratio(set by yourself)>OK. If it needs restart,
just restart.

Choose screen resolution

Default T20x4380

DMT Mode 4 6£40x480 60Hz 4:3
DMT Mode 9 S00x600 60Hz 4:3
DMT Mode 16 1024x=768% 60Hz 4:3
DMT Mode 85 1250x720 60Hz 16:9
DMT Mode 35 1280x1024 €0Hz 5:4
DMT Mode 51 1600x1200 &0Hz 4:3

80 & 3]

<0k> <Cancel>

support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

Install the System www.freenove.com [l

In addition, your VNC Viewer window may zoom your Raspberry Pi desktop. You can change it. On your
VNC View control panel, click right key. And select Properties->Options label->Scaling. Then set proper
scaling.

I8 raspberry pi - Properties - O *
General Options  Expert

General

Picture quality: | Automatic ~
[1View-only
Scaling

100% ~

Preserve aspect ratio

Keys
Pass media keys directly to VNC Server
Pass special keys directly to VNC Server

raspbe Connect
Rename F2
Delete
Duplicate Ctrl+D
Properties... Alt+Enter Cancel

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer and operated proper setting.
Then continue to do some preparation work: install a GPIO library wiringPi for your RPi.

Wi-Fi

Raspberry Pi 3B+/3B integrates a Wi-Fi adaptor. You can use it to connect to your Wi-Fi. Then you can use
the wireless remote desktop to control your RPi. This will be helpful for the following work. Raspberry Pi of
other models can use wireless remote desktop through accessing an external USB wireless card.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

Why is “Chapter 0"? Because in the program code, all the counts are starting from 0. We choose to follow this
rule (just a joke). In this chapter, we will do some necessary preparation work: start your Pi Raspberry and
install some necessary libraries. If your Raspberry Pi can be started normally and used normally, you can skip
this chapter.

WiringPi is a GPIO access library written in C for the BCM2835/BMC2836/ BMC2837 used in the Raspberry Pi.
It's released under the GNU LGPLv3 license and is usable from C, C++ and many other languages with suitable
wrappers (See below) It's designed to be familiar to people who have used the Arduino “wiring” system. (for
more details, please refer to http://wiringpi.com/ )

New Raspbian system has integrated this library. So it may prompt that you have installed it.
open the terminal:
$ O-H*0

B |

Wastebasket

Eile Edit Tabs Help

pil@raspberrypi:



http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/

Follow these steps and commands to complete the installation.

Enter the following command in the terminal to obtain WiringPi using GIT:
sudo apt-get update

sudo apt-get upgrade

git clone git://git.drogon.net/wiringPi

After the cloning operation is completed, go to the wiring folder and update the latest WiringPi.
cd wiringPi
git pull origin

Run the build file to start the installation.
/build

The new build script will compile and install it all for you. It does use the sudo command at one point, so you
may wish to inspect the script before running it.

Run the gpio command to check the installation:

gpio -v

gpio readall

That should give you some confidence that it's working well.

pigraspberrypi:~ $ gpio -v
C version: 2

) WARRANTY .

Memory: 1024MB, Maker:

; user-level GPIO acc
detalls
'TOMEM=1

More details refer to here: http://wiringpi.com/download-and-install/



http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/download-and-install/

B www freenove.com Chapter O Preparation

Obtain the Project Code

After the above work is done, you can visit our official website (http://www.freenove.com) or our github
(https://github.com/freenove) to download the latest project code. We provide both C language and Python
language code for each project in order to apply to user skilled in different languages.

Method for obtaining the code:
In the pi directory of the RPi terminal, enter the following command:

After the download is completed, a new folder "Freenove_RFID_Starter_Kit_for_Raspberry_Pi" is generated,
which contains all the tutorials and code.

If you think the folder name is too long. You can rename it by following command.

Among them, "xxx" represents the new folder name. If you rename the folder, you must change every
“Freenove_RFID_Starter_Kit_for_Raspberry_Pi" to new folder name in later commands which contain folder
name.

support@freenove.com Il


http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/
https://github.com/freenove

If you only use C/C++, you can skip this section.

Now Python code of our kits can run on Python2 and Python3. Python3 is recommend. If you want to use
python2, please make sure your Python version is above 2.7. Python2 and Python3 is not fully compatible.
However, Python2.6 and Python2.7 are transition versions to python3. So you can also use Python2.6 and 2.7
to execute some Python3 code.

You can type python2 and python3 respectively to check if python has been installed. Pree Ctrl-Z to exit.

17:33:09)
or "license" for more information.

14:11:04)

or "license" for more information.

If you want to set Python3 as default Python actuators. please follow the steps below.
1. Enter directory /usr/bin
cd /usr/bin
2. Delete the old python link.
sudo rm python
3. Creat new python links to python3.
sudo In —s python3 python
4. Execute python to check whether the link succeeds.
python
aspberrypi:
aspberrypi:

iraspberrypi:
1 3.5.3 ( 14:11:04)

or "license" for more information.



http://www.freenove.com/
mailto:support@freenove.com

If you want to set python?2 as default python actuators, repeat above steps and just change the third command
to the following.
sudo In —s python2 python

pl@raspberrypi
L@raspberrypil

We will execute a same python file Hello.py with Python2 and Python3.
First, use Python2 to execute the code.
1. Use cd command to enter 00.0.0_Hello directory of Python code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/00.0.0_Hello
2. Use python2 command to execute python code Hello.py.
python2 Hello.py

pifiraspberrypi
python2 Hello.py

Hello World

Use Python3 to execute the code under same directory.
3. Use python3 command to execute python code Hello.py.
python3 Hello.py

pifiraspberrypl
python3 Hello.py

Hello World

As yOUu can see, we get same results.

Because the code for our kit supports Python2 and Python3. We just say python later, not specific Python2 or
Python3. You can shoose python version according to your situation.


http://www.freenove.com/
mailto:support@freenove.com

Here we will introduce three kinds of code editor: vi, nano and Geany. Among them, nano and vi are used to
edit files directly in the terminal, and Geany is an independent editing software. We will use the three editors
to open an example code "Hello.c" respectively. First we will show how use vi and nano editor:

First, use cd command to enter the sample code folder.
cd ~
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/00.0.0_Hello

Use the vi editor to open the file "Hello.c", then press ": 9" and “Enter” to exit.
vi Hello.c

As is shown below:
File Edit Tabs Help

Binclude <stdio.h=

5Iiﬂif:HWEIlG, world!\n");

return 1;

Use the nano editor to open the file "Hello.c", then press " Ctrl+X " to exit.
nano Hello.c


http://www.freenove.com/
mailto:support@freenove.com

As is shown below:

File Edit
GNU nmano

.4 File: Hello.c

1:

Use the following command to compile the code to generate the executable file “Hello”.
gcc Hello.c —o Hello

Use the following command to run the executable file “Hello”.
sudo ./Hello

After the execution, "Hello, World!" is printed out in terminal.

File Edit Tabs Help
pifiraspberrypi:
Hello.c -o Hello
raspberrypi:
o ./Hello
, world
Braspberrypi:



http://www.freenove.com/
mailto:support@freenove.com

Chapter 0 Preparation www.freenove.com [l

Next, learn to use the Geany editor. Use the following command to open the Geany in the sample file
"Hello.c" file directory path.

Or find and open Geany directly in the desktop main menu, and then click File->Open to open the "Hello.c",
Or drag "Hello.c" to Geany directly.

|@;| @9 [__[EL| E * @ [;;![pi@raspberr}f_pi: ~1’Fr...H [0

Programming Arduino IDE

42 BlueJ Java IDE

ammer's Editor

i Greenfoot Java IDE

* Mathematica
MNode-RED

==

m
4]
£
=
o
=
0
5]

~

File Edit Search View Document Project Build Tools Help

Bvavy La| B x| KR REARA 42| FIEaE
ﬂ Symbols IZ Hello.c % I
| = @ Functions 1 #include <stdio.h> =]
1= 2
; & main [3] 3 int main(){
! 4 printf{"hello, world!'\n");
5
6 return 1;
- }
[v]
<]
Status 10:063:31: This is Geany 1.29.
s i ~ | 10:03:31: File /shome/pi/Freenove_Three-wheeled Smart_car_Kit_for_Raspberry_Pi/Server/mDev.py opened(1).
- Compiler
i P 18:03:39: File /home/pi/Freenove_Three-wheeled_smart_car_kit_for_Raspberry_Pi/Server/mbev.py closed.
Pt
MeSSa0E5| 10:03:42: File /home/pi/Freenove xxx Starter Kit for Raspberry Pi/Code/C Code/ee.e.0 Hello/Hello.c opened(1).
| Scribble
| Terminal
|
line:7 /7 col:1 sell0 INS TAB modelF encoding:UTF-8 filetype:C scope:main

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

Generates an executable file by clicking menu bar Build->Build, then execute the generated file by clicking

menu bar Build->Execute.

Build Tools Help
%3 Compile

°

Make

Make Custom Target...

Make Object
w2 Mext Error
Previous Error

s2 Execute

% Set Build Commands

Shift+F9
Shift+Ctrl+F9
Shift+F8

Builld Tools Help
%3 Compile

@® Build

Make
Make Custom Target...
Make Object

w7 Next Error
Previous Error

o

ST

i Set Build Commmands

After the execution, there will be a terminal printing out the characters “Hello, World!

File Edit Tabs Help
hello,

world

: return

to continue

:8 ;
F9
Shift+F9
Shift+Ctrl+F9
Shift+F8

" as shown below:



http://www.freenove.com/
mailto:support@freenove.com

Chapter 0 Preparation www.freenove.com Il

You can click Build->Set Build Commands to set compiler commands. In later projects, we will use various
compiler command options. If you choose to use Geany, you will need change the compiler command here.
As is shown below:

Set Build Commands

# Label Command Working directory ~ Reset

C commands

1. ‘ Compile I gece -Wall ¢ "%f" | ‘ i

2. | Build I gee -Wall -0 "%e” "% f | ‘ g

3. I Lint ‘ cppcheck ——Ianguagezc| | d
Error regular expression: d

Independent commands

1. Make make d

2. |Make Custom Target...| |make g

3. Make Object make %e.o d

4. 4
Error regular expression: &

Note: Item 2 opens a dialogue and appends the response to the command.

Execute commands

1. l Execute I ‘".,f'ié.e-" | ‘ | l 4 ‘

2| | | 4]

%d, %e, %f, %p, %l are substituted in command and directory fields, see manual for details.

lQancel H OK ‘

Summary

Here we have introduced three code editors. There also many other good code editors, and you can choose
any one you like. In later projects, about the entry path and the compiler execute commands, we will
operate the contents in the terminal as examples. We won't emphasize the code editing process, but will
explain the contents of the code in details.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter O Preparation

GPIO

GPIO: General purpose input/output. We will introduce the specific future of the pins on the Raspberry Pi and
what you can do with them. You can use them for all sorts of purposes. Most of them can be used as either

inputs or outputs, depending on your program.
When programming the GPIO pins there are 3 different ways to refer to them: GPIO numbering, physical
numbering, WiringPi GPIO Numbering.

BCM GPIO Numbering

Raspberry Pi CPU use BCM2835/BCM2836/BCM28370f Broadcom. GPIO pin number is set by chip
manufacturer. These are the GPIO pins as that computer recognizes. The numbers don't make any sense to
humans. They jump all over the place, so there is no easy way to remember them. You will need a printed
reference or a reference board that fits over the pins.

Each pin is defined as below:

=
= R = 2 o
o o o o C 2 g o
B o oo o L T oo
8%, 44 238858 | &ESE
— N ~ 5 r - -
~ > o0 B8 o929 occ & Eaooo X ¥
o =2 % o w b O A BB F A oLUow o~ F o OZ w 9 D
H++WI—EWGWEWWUUEE‘L’?L’3UEME
= =
g 0) (O) z
=1
- - ™
£ £
o TEEEE TEEEEEEE
= = =
" a o 2 ¢ g m a e g 2 S
0] A & o D 9 o &
LA G o ]

GPFIO2 / 5DAL
GFIO3 / 5CL1
GPIO% / MISO
GPIO11 f 5CLE

o
v
=
o
—
=
o
0

support@freenove.com [l

GPIO10 / MOsI
GPIOO /1D 5D

For more details about pin definition of GPIO, please refer to http://pinout.xyz/



http://www.freenove.com/
mailto:support@freenove.com
http://pinout.xyz/

Chapter 0 Preparation www.freenove.com Il

PHYSICAL Numbering

Another way to refer to the pins is by simply counting across and down from pin 1 at the top left (nearest to
the SD card). This is 'physical numbering', as shown below:

Q000000000000

0000 DOO0O090>00D00O =

Raspberry Pi A+ / B+ and Raspberry Pi 2 physical pin numbers

(ario @Ground ()zav @sv (o

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

. www.freenove.com

Chapter O Preparation

WiringPi GPIO Numbering

Different from the previous mentioned two kinds of GPIO serial numbers, RPi GPIO serial number of the
WiringPi was renumbered. Here we have three kinds of GPIO number mode: based on the number of BCM
chip, based on the physical sequence number and based on wiringPi. The correspondence between these
three GPIO numbers is shown below:

wiringPi BCM
Pin GPIO
8 R1:.0/R2:2
9 R1:1/R2:3
7 4
0 17
2 R1:21/R2:27
3 22
12 10
13 9
14 11
30 0
21 5
22 6
23 13
24 19
25 26
wiringPi BCM
Pin GPID

Name

3.3v
SDA
SCL
GPIO7
Ov
GPIO0
GPIO2
GPIO3
3.3v
MOSI
MISO
SCLK
Ov
SDAO
GPIO .21
GPIO .22
GPIO .23
GPIO .24
GPIO .25
ov

Name

Header

1]2
314
5|6
718
9110
11112
13114
15116
1718
1920
21|22
23|24
25| 26
2728
2030
31|32
33|34
35|36
37138
39| 40

Header

Hame
Hv
Hv
Ov

GPIO1
Ov
GPIO4
GPIOS
Ov
GPIO6
CEOD
CE1
SCLO
ov
GPIO .26
ov
GPIO .27
GPIO .28
GPIO .29

Name

BCM
GPIO

14
15
18
23
24
25
8
7
1

12

16
20

21
BCM
GPIO

wiringPi

Pin

_ -
&)

;; =

16 5 =

@]

R R

_ . ww

4 -t

c s

B il

10 o

11 -
(%]

31 s
+

26 -
[~

27 L

28 O

29

wiringPi
Pin

(For more details, please refer to https://projects.drogon.net/raspberry-pi/wiringpi/pins/ )

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com
https://projects.drogon.net/raspberry-pi/wiringpi/pins/

You can also use the following command to view their correspondence.

gpio readall

+
!

gpio readall

raspberrypi:

@

pig
oo oo oo

For more details about wiringPi, please refer to http://wiringpi.com/ .


http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/

B www freenove.com Chapter O Preparation

GPIO Extension Board

When we use RPi to do the project, we had better use GPIO, which is more convenient to extend all IO ports
of RPi to the bread board directly. The GPIO sequence on Extension Board is identical to the GPIO sequence
of RPi. Since the GPIO of different versions of RPi is different, the corresponding extensions board are also
different. For example, a GPIO extensions board with 40 pins is connected to RPi as follows:

g Iy

DSI (DISPLAY)

= ° DR ® o 0 s
>
=
[}
= e e e w0 . . ¢ oo DRI B
o e e e e e . “eoe DR IR I A
[ seansse ® ® Y DR I I I
c oo AMS AW a O o~
5] == = Il ¢ ¢ ¢ s ¢ 0 0 0 s »
‘; ""EQEEQ () 222 ® e e 0 0 0 0 e e e
w FEgTEE & aaa
o o vuo v uouv
- r~rsoy oo
o = — o [Te) -
o 2999"‘9' [=] SSo IR RE
i aZaoaaoas9= o aoZ 8 e 0 8 08 s e
o VOVVUM== (T} [cITIT]
. TR X . . [ AR Yo ¢ ¢ ¢ 0 00 00 s 0
? R . e e e v 0000 e e
B . L A . . " e ® 8 0 0 00 e
o
w
]
x “ e 0 “ o e s
e e e 0 “ e 0 0. ® s 0 0 s e e e e ® o0 0

ETHERNET

fi i

Practicality picture of connection:

.

=aman

LEE LR

s

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 0 Preparation www.freenove.com Il

GPIO Extension Board and its schematic are shown below:

GPIO Extension Board Definition of pins
E A EEEEEEEEEEEEEEEEEDN 33V 5V
—son: 1ol &
—21SCL1 RXDO |10
—L1GPI04 GPIO18}-12
1iGPIO17 GPI023}-16
1314GPI027 GPI024 }-18
2 1GPI022 GP1025}22
~191Mos| CEO0 24
ey o ZHiso cefas
GPI022 GPIO23 ~231SCLK SCLO 28~
V3 GPIO24 -2LISDAO GPI012 32—
MOST _GND -291GPI05 GPIO16 |36~
SCK CED -311GPIo6 GPI020}38
GND  CEi -331GPI013 GPI021 }-40-
o s S{criors
GPIO6  GPIO12 -3L1GPI026 Raspberry Pi
g;ig}g proﬂg GPIO Extension Shield
GPI026 GPIO20 GND
GND  GPIO21

Breadboard Power Module

Breadboard Power Module is an independent board, which can provide independent 5V or 3.3V power for
bread board when used to build the circuit, and it can avoid excessive load power damaging RPi power. The
schematic diagram of the Breadboard Power Module is shown below:

Power Switch Power Light

USB Output Port }

[ Power Jack

[ Output voltage selection Output voltage selection }

. OFF 3.3V

[ Output port for power + Output port for power }

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter O Preparation

The connection between Breadboard Power Module and Breadboard is shown below:

5V OFF 3.3V
00CO

e e s s
e e s s 0
s s s 0
e e o 0
e e s s
e o o o 0
® & & o 0

E N
S EEN HEE

(=]
2

AS AE'E

e e 8 0 0
e e o o @

5V OFF 3.3V
Tt

Next

Here, all preliminary preparations have been completed. Next, we will combine the RPi and electronic
components to do a series of projects from easy to difficult and focus on explaining the relevant knowledge
of electronic circuit.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 1 LED www.freenove.com .

Chapter 1 LED

This chapter is the starting point of the journey to explore RPi electronic projects. Let’s start with simple “Blink”.

Project 1.1 Blink

In this project, let’s try to use RPi to control LED blinking.

Component List

Raspberry Pi 3B x1 GPIO Extension Board & Wire x1

NPENNE -

13IN¥3IHLI

SI (CAMERA)

Raspberry Pi GPIO Extension Shield

#GND RXDO0s
#GPIO17 GPIO18s
#GPIO27  GNDe
#GPI022 GPI023s
«3V3 GPI024s
#MOSI GNDs
#MISO  GPIO25s
. CEOs

CE1e

SCLOs

GNDs
*GPIO6 GPIO12e
#GPIO13  GNDs
#GPI019 GPIO16e
#GP1026 GPI020s
oGND  GPIO21e

(AVIdSIq) ISq

BreadBoard x1

® 9 8 9 8 T P P PSS PP PSS S PSSP E TS EETE P EEEEPEEEEeeEeeYEYYYee
® 8 8 8 8 8 O ° 8 P S S S E S S S S S S S S S S S S S S S S S S ESSSEEESEEEESEEEesssesseses
® ® 8 8 8 8 O ° 8 S S S S G S S S S S S S S S S S S S S S S E PSS E PSS e s s
® ® 8 8 8 5 © 8 S S 6 S S S S S S S S S G S S S S S T G G S S G GG T S S S GGG S S S S S S E S S s E S
® © 8 8 8 8 8 O 8 8 S S S G S S S S S S S S S S S S S S G S S S S S S S S S S S S S S S S S E S S e s S S e ee
® © 8 8 8 8 8 8 S S S S S S S S S S S S S S S S S S S S S S T S S S S S S S S S S S S S S E e eSS e e
® © 8 8 8 8 ® 8 8 8 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S G S G E S S S S S S S S S
® ® 8 8 8 8 8 e 8 8 ® S S S S S S S S S S S S S S S S S O S S S S S S O S S S S S S S S S S S S S S S S S S S S S S S S SS
® ® 8 8 8 " ® 8 8 8 8 S S S S S S S S S S T S S S S S S S S S S S S S O S S S S S S S S S S S S S E S S eSS eSS
® ® 8 8 8 ° 8 ST T S S S S S S S S S S S S S S S S S O S S S T S S S S S S S S S S S S S eSS eSS e
® e o 00 e o o o o 0 U I O U I O ® o 0 0 @ o o s 0 e . LR e 8 0 U I O
e 0 0 e o o o o 0 U O o 0o 0 @ ® o 0 0 0 o o s 0 e ® s e 0 e s o e U O

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

. www.freenove.com Chapter 1 LED

LED x1 Resistor 220Q x1 Jumper

In the components list, 3B GPIO, Extension Shield Raspberry and Breadboard are necessary for each project.
They will be listed only in text form later.

Component knowledge

LED

LED is a kind of diode. LED will shine only if the long pin of LED is connected to the positive electrode and the
short pin is connected to negative electrode.

This is also the features of the common diode. Diode works only if the voltage of its positive electrode is
higher than its negative electrode.

The LED can not be directly connected to power supply, which can damage component. A resistor with certain
resistance must be connected in series in the circuit of LED.

Resistor

The unit of resistance(R) is ohm(Q). 1mQ=1000kQ, 1kQ=1000Q.

Resistor is an electrical component that limits or regulates the flow of current in an electronic circuit.

The left is the appearance of resistor, and the right is the symbol of resistor represented in circuit.

Color rings attached to the resistor is used to indicate its resistance. For more details of resistor color code,
please refer to the appendix of this tutorial.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 1 LED www.freenove.com .

With the same voltage there will be less current with more resistance. And the links among current, voltage
and resistance can be expressed by the formula below: I=U/R.
In the following diagram, the current through R1 is: I=U/R=5V/10kQ=0.0005A=0.5mA.

Do not connect the two poles of power supply with low resistance, which will make the current too high to
damage electronic components.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

. www.freenove.com Chapter 1 LED

Circuit

Disconnect RPi from GPIO Extension Shield first. Then build the circuit according to the circuit diagram and
the hardware connection diagram. After the circuit is built and confirmed, connect RPi to GPIO Extension
Shield. In addition, short circuit (especially 5V and GND, 3.3V and GND) should be avoid, because short circuit
may cause abnormal circuit work, or even damage to RPI.

Schematic diagram

3.3V 5V
—31SDA1 TXDO =8
—2.1sCL1 RXDO }-12
—L1GPI04 GPIO18}-12
11GPI017 GPI1023}18
\ 3 1GPI027 GPI024 }-18
2 1GPI022 GPI025}22—
gggm 19 fmosi CEO |24
= 21IMi1s0 CE1}26_
23.1SCLK SCLO |28
2L1SDA0 GPIO12}32.
27 29.1GPIO5 GPIO16 /36—
2 A -311GPI06 GPI020 |38
-331GPI013 GPI021 40
-35.1GPI019
"EL'GP]OZG Raspberry Pi
GPIO Extension Shield
GND

Hardware connection

(RRRERERRRRRERRE J

. L I A
. il
IR IO S O
CGEEEEED ° e e e v e

(I
INaGH

—

Raspberry Pi GPIO Extension Shield

Because Numbering of GPIO Extension Shield is the same as RPi GPIO, later Hardware connection diagram
will only show the part of breadboard and GPIO Extension Shield.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 1 LED www.freenove.com Il

Code

According to the circuit, when the GPIO17 of RPi output high level, LED is turned on. Conversely, when the
GPIO17 RPi output low level, LED is turned off. Therefore, we can let GPIO17 output high and low level in
cycle to make LED blink. We will use both C code and Python code to achieve the target.

C Code 1.1.1 Blink

First, observe the project result, and then analyze the code.

1. Use cd command to enter 01.1.1_Blink directory of C code.

2. Use the following command to compile the code “Blink.c” and generate executable file “Blink”.

3. Then run the generated file “blink”.

Now, LED start blink. You can press “Ctrl+C" to end the program.
The following is the program code:

#include <wiringPi.h>
#include <stdio.h>

fidefine ledPin 0

int main(void)
{
if (wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
printf ("setup wiringPi failed !7);
return 1;

}

//when initialize wiring successfully, print message to screen

printf ("wiringPi initialize successfully, GPIO %d(wiringPi pin)\n”, ledPin) ;
pinMode (1edPin, OUTPUT) ;

while (1) {
digitalWrite (ledPin, HIGH): //led on
printf ("led on...\n");
delay (1000) ;
digitalWrite (1edPin, LOW); //led off
printf(". .. led of f\n");
delay (1000) ;

return 0;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 1 LED

GPIO connected to ledPin in the circuit is GPIO17. And GPIO17 is defined as 0 in the wiringPi numbering. So
ledPin should be defined as 0 pin. You can refer to the corresponding table in Chapter 0.

B #define ledPin 0

In the main function main(), initialize wiringPi first, and then print out the initial results. Once the initialization
fails, exit the program.

if(wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
printf ("setup wiringPi failed !7);
return 1;

}

//when initialize wiring successfully, print message to screen

printf ("wiringPi initialize successfully, GPIO %d(wiringPi pin)\n”, ledPin) ;

After the wiringPi is initialized successfully, set the ledPin to output mode. And then enter the while cycle,
which is an endless loop. That is, the program will always be executed in this cycle, unless it is ended outside.
In this cycle, use digitalWrite (ledPin, HIGH) to make ledPin output high level, then LED is turned on. After a
period of time delay, use digitalWrite(ledPin, LOW) to make ledPin output low level, then LED is turned off,
which is followed by a delay. Repeat the cycle, then LED will start blinking.
pinMode (1edPin, OUTPUT) ;
while(1) {
digitalWrite (ledPin, HIGH):; //led is turned on
printf (“led on...\n");
delay (1000) ;
digitalWrite(ledPin, LOW); //led is turned off
printf (... led off\n");
delay (1000) ;

}

Among them, the configuration function for GPIO is shown below as:
[ void pinllode(int pin, int mode); |
This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or GPIO_CLOCK. Note that only
wiringPi pin 1 (BCM_GPIO 18) supports PWM output and only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK
output modes.

This function has no effect when in Sys mode. If you need to change the pin mode, then you can do it with
the gpio program in a script before you start your program

Writes the value HIGH or LOW (1 or 0) to the given pin which must have been previously set as an output.

For more related functions, please refer to http://wiringpi.com/reference/
Python Code 1.1.1 Blink
Net, we will use Python language to make LED blink.

First, observe the project result, and then analyze the code.
1. Use cd command to enter 01.1.1_Blink directory of Python code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/01.1.1_Blink
2. Use python command to execute python code blink.py.
python Blink.py
Now, LED start blinking.
The following is the program code:

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/reference/

Chapter 1 LED www.freenove.com Il

import RPi.GPIO as GPIO

import time

ledPin = 11 # RPI Board pinll

def setup():
GPI0. setmode (GPT0. BOARD) # Numbers GPIOs by physical location
GPI0. setup(ledPin, GPIO.OUT) # Set ledPin’s mode is output
GPIO. output (ledPin, GPIO.LOW) # Set ledPin low to off led
print (using pin%d’ %ledPin)

def loop(Q):
while True:

GPIO0. output (ledPin, GPIO.HIGH) # led on
print (...led on’)
time. sleep (1)
GPIO0. output (ledPin, GPIO.LOW) # led off
print ( led off...")
time. sleep (1)

def destroy():
GPI0. output (ledPin, GPIO.LOW) # led off

GPI0. cleanup () # Release resource
if name == main : # Program start from here
setup ()
try:
Loop ()

except KeyboardInterrupt: # When ’Ctrl+C’ is pressed, the child program destroy ()
will be executed.

destroy ()

In subfunction setup(), GPIO.setmode (GPIO.BOARD) is used to set the serial number for GPIO based on
physical location of the pin. GPIO17 use pin 11 of the board, so define ledPin as 11 and set ledPin to output
mode (output low level).

ledPin = 11 # RPi Board pinll

def setup(Q:
GPIO0. setmode (GPI0. BOARD) # Numbers GPIOs by physical location
GPI0. setup(ledPin, GPIO.OUT) # Set ledPin to output mode
GPIO. output (1edPin, GPIO.LOW) # Set ledPin to low level to turn off led
print (using pin%d %ledPin)

In loop(), there is a while cycle, which is an endless loop. That is, the program will always be executed in this

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 1 LED

cycle, unless it is ended outside. In this cycle, set ledPin output high level, then LED is turned on. After a period
of time delay, set ledPin output low level, then LED is turned off, which is followed by a delay. Repeat the cycle,
then LED will start blinking.

def loop():
while True:

GPIO. output (ledPin, GPIO.HIGH) # led on
print (...led on’)
time. sleep(1)
GPIO. output (ledPin, GPIO.LOW) # led off
print ( led off...”)
time. sleep(1)

Finally, when the program is terminated, subfunction will be executed, the LED will be turned off and then the
IO port will be released. If close the program terminal directly, the program will be terminated too, but destroy
() function will not be executed. So, GPIO resources won't be released, in the warning message may appear
next time you use GPIO. So, it is not a good habit to close the program terminal directly.

def destroy():
GPI0. output (1edPin, GPIO.LOW) # led is turned off
GPI0. cleanup () # Release resource

About RPi.GPIO:

This is a Python module to control the GPIO on a Raspberry Pi. It includes basic output function and input
function of GPIO, and function used to generate PWM.

Set the mode for pin serial number of GPIO.

mode=GPIO.BOARD, which represents the GPIO pin serial number is based on physical location of RPi.

mode=GPIO.BCM, which represents the pin serial number is based on CPU of BCM chip.

Set pin to input mode or output mode. “pin” for the GPIO pin, “mode” for INPUT or OUTPUT.

Set pin to output mode. “pin” for the GPIO pin, “mode” for HIGH (high level) or LOW (low level).

For more functions related to RPi.GPIO, please refer to:
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

Chapter 2 Button & LED www.freenove.com Il

Chapter 2 Button & LED

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL.
In last section, the LED module is the output part and RPI is the control part. In practical applications, we not
only just let the LED lights flash, but make the device sense the surrounding environment, receive instructions
and then make the appropriate action such as lights the LED, make a buzzer beep and so on.

Next, we will build a simple control system to control LED through a button.

Project 2.1 Button & LED

In the project, we will control the LED state through a button. When the button is pressed, LED will be turn
on, and when it is released, LED will be turn off.

Component List

Raspberry Pi 3B x1 LED x1 | Resistor 220Q | Resistor 10kQ | Push
GPIO Extension Board & Wire x1 x1 X2 button x1
BreadBoard x1

Jumper | .

—-a---. 444444

Component knowledge

Push button
Push button has 4 pins. Two pins on the left is connected, and the right is similar as the left, which is shown

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 2 Button & LED

in the below:

1 2 1 2

When the push button is pressed, the circuit is turned on.

Circuit
Schematic diagram
33V 5V §RZQ
—31SDA1 TXDO |8~ 10
—=2-4SCL1 RXDO 10
—L{GPIO4 GPIO181-12 ——AAA—4
111GPI017 GPI023 16 &
A31GpPI027 GP1024 |18
151GPI022 GPI025/-22— L
§§%Q 19 mos| CE0|-24—
-214miso CE1[46- ¥
231sCcLK SCLO|28~ '
2L1spA0 GPIO12 |32~
P 291GP105 GPI1016 |36
2 S -311GPI06 GPI020 |38~
-331GPI013 GPI021 40
-321GPI019
GPIO26 Raspberry Pi
GPIO Extension Shield
GND
Hardware connection
E * ® 00 * ® 00 *® o o 0 0 L I I III:: :: : : ::. .: : :...:
=
ﬁ ® % 9 ® 9 9 " 8 " YYD
_5 ® 0 0 9 9 9 Y Y Y Y e
K Mgy PPN A
Lﬁ .'.-......................
= O
% . e e 0 . e o - ® @ @ 8 ° 9 0 0 e e e e Y e
-n—- HHHHH -w-ccoco-mooccccccccccc--..-
= > A e P O S R P e |
-§. ...l..ll.llllI—I.........I.lllllllllllll...
&“ * @ * @ * ® o 0 * ® 8 0 9 e 8 8 0 9 . @ ° ° 0 . @ ° 9 . 8 @ 8 9 . & @ @ @ . & * @ @

Code

This project is designed for learning how to use button to control LED. We first need to read the state of

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED www.freenove.com [l

button, and then determine whether turn on LED according to the state of the button.
C Code 2.1.1 ButtonLED

First, observe the project result, then analyze the code.

1. Use cd command to enter 02.1.1_ButtonLED directory of C code.

2. Use the following command to compile the code “ButtonLED.c” and generate executable file “ButtonLED”

3. Then run the generated file “ButtonLED".

Later, the terminal window continues to print out the characters “led off-". Press the button, then LED is
turned on and then terminal window prints out the "led on--". Release the button, then LED is turned off and
then terminal window prints out the "led off--". You can press "Ctrl+C" to terminate the program.

The following is the program code:

#include <wiringPi.h>
#include <stdio. h>

ttdefine ledPin 0 //define the ledPin
ttdefine buttonPin 1 //define the buttonPin

int main(void)

{

if (wiringPiSetup() == -1) { //when initialization for wiring fails, print message to

screen
printf ("setup wiringPi failed !7);

return 1;

pinMode (1edPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;

pullUpDnControl (buttonPin, PUD UP); //pull up to high level
while (1) {

if(digitalRead (buttonPin) == LOW) { //button has pressed down
digitalWrite (1edPin, HIGH): //led on
printf ("led on...\n");
}
else { //button has released
digitalWrite (1edPin, LOW); //led off
printf("...led of f\n");

}

return 0;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 2 Button & LED

In the circuit connection, LED and Button are connected with GPIO17 and GPIO18 respectively, which

correspond to 0 and 1 respectively in wiringPl. So define ledPin and buttonPin as 0 and 1 respectively.
#tdefine ledPin 0 //define the ledPin

. #tdefine buttonPin 1 //define the buttonPin

In the while cycle of main function, use digitalRead(buttonPin) to determine the state of Button. When the

button is pressed, the function returns low level, the result of “if” is true, and then turn on LED. Or, turn off
LED.

if(digitalRead (buttonPin) == LOW) { //button has pressed down
digitalWrite (ledPin, HIGH); //led on

printf("led on...\n");

}

else { //button has released
digitalWrite(ledPin, LOW): //led off
printf(". .. led off\n”);

}

About digitalRead():

This function returns the value read at the given pin. It will be "HIGH” or "LOW”(1 or 0) depending on the

logic level at the pin.

The code of Python language is shown below.
Python Code 2.1.1 ButtonlLED
First, observe the project result, then analyze the code.
1. Use cd command to enter 01.1.1_btnLED directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/02.1.1_ButtonLED
2. Use Python command to execute btnLED.py.

python ButtonLED.py
Later, the terminal window continue to print out the characters “led off-", press the button, then LED is turned
on and then terminal window print out the "led on". Release the button, then LED is turned off and then
terminal window print out the "led off-:". You can press "Ctrl+C" to terminate the program.
The following is the program code:

import RPi.GPIO as GPIO

ledPin = 11 # define the ledPin
buttonPin = 12 # define the buttonPin

def setup():

print ( Program is starting...’)

GPIO. setmode (GPI0. BOARD) # Numbers GPIOs by physical location

GPIO0. setup(ledPin, GPIO.OUT) # Set ledPin’ s mode is output

GPIO. setup(buttonPin, GPIO.IN, pull up down=GPIO0.PUD UP) # Set buttonPin’ s mode is
input, and pull up to high level(3.3V)

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED www.freenove.com Il

def loop():
while True:

if GPIO. input (buttonPin)==GPI0. LOW:
GPI0. output (1edPin, GPIO0. HIGH)
print ( led on ...")

else :
GPI0. output (1edPin, GPI0. LOW)
print ( led off ...")

def destroy():
GPI0. output (1edPin, GPIO.LOW) # led off

GPI0. cleanup () # Release resource
if name_ == main : # Program start from here
setup ()
try:
loop ()

except KeyboardInterrupt: # When ’Ctrl+C’ is pressed, the child program destroy ()
will be executed.

destroy ()

In subfunction setup (), GPIO.setmode (GPIO.BOARD) is used to set the serial number of the GPIO, which is
based on physical location of the pin. So, GPIO17 and GPIO18 correspond to pinll and pinl2 respectively in
the circuit. Then set ledPin to output mode, buttonPin to input mode with a pull resistor.
ledPin = 11 # define the ledPin
buttonPin = 12 # define the buttonPin
def setup():
print ( Program is starting...’)
GPI0. setmode (GPI0. BOARD) # Numbers GPIOs by physical location
GPIO. setup(ledPin, GPIO. OUT) # Set ledPin’ s mode is output
GP10. setup (buttonPin, GPIO.IN, pull up down=GPI0.PUD UP) # Set buttonPin’s mode is
input, and pull up to high level (3. 3V)

In the loop function while dead circulation, continue to judge whether the key is pressed. When the button is
pressed, the GPIO.input(buttonPin) will return low level, then the result of “if” is true, ledPin outputs high level,
LED is turned on. Or, LED will be turned off.
def loop():
while True:
if GPIO. input (buttonPin)==GPTI0. LOW:
GPI0. output (1edPin, GPTO. HIGH)
print ( led on ...")

else :
GPI0. output (1edPin, GPI0. LOW)
print ( led off ...")

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 2 Button & LED

Execute the function destroy (), close the program and release the resource.
About function GPIO.input ():

This function returns the value read at the given pin. It will be “HIGH" or “LOW"(1 or 0) depending on the
logic level at the pin.

Project 2.2 MINI table lamp

We will also use a button, LED and UNO to make a MINI table lamp. But the function is different: Press the
button, the LED will be turned on, and press the button again, the LED goes out.
First, let us learn some knowledge about the button.

Debounce for Push Button

When a Push Button is pressed, it will not change from one state to another state immediately. Due to
mechanical vibration, there will be a continuous buffeting before it becomes another state. And the releasing-
situation is similar with that process.

press I s‘ltable rellease| stable
U
U .
| |
Ideal state } }
| | N
u | | t
™ |
| |
Virtual state | ‘ ‘
| N
| 7
I

Therefore, if we directly detect the state of Push Button, there may be multiple pressing and releasing action
in one pressing process. The buffeting will mislead the high-speed operation of the microcontroller to cause
a lot of false judgments. So we need to eliminate the impact of buffeting. Our solution is: to judge the state
of the button several times. Only when the button state is stable after a period of time, can it indicate that the
button is pressed down.

This project needs the same components and circuits with the last section.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED www.freenove.com Il

Code

In the project, we still detect the state of Button to control LED. Here we need to define a variable to save the
state of LED. And when the button is pressed once, the state of LED will be changed once. This has achieved
the function of the table lamp.

C Code 2.2.1 Tablelamp

First observe the project result, and then analyze the code.

1. Use cd command to enter 02.2.1_Tablelamp directory of C code.

2. Use following command to compile “Tablelamp.c” and generate executable file “Tablelamp”.

3. Tablelamp. Then run the generated file “Tablelamp”.

When the program is executed, press the Button once, then LED is turned on. Press the Button another time,

then LED is turned off.
#include <wiringPi.h>
#tinclude <{stdio.h>

#define ledPin 0 //define the ledPin
#tdefine buttonPin 1 //define the buttonPin
int ledState=LOW; //store the State of led
int buttonState=HIGH; //store the State of button
int lastbuttonState=HIGH;//store the lastState of button
long lastChangeTime; //store the change time of button state
long captureTime=50; //set the button state stable time
int reading;
int main(void)
{
if (wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
printf ("setup wiringPi failed !7);
return 1;
}
printf ("Program is starting...\n”);
pinMode (1edPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;

pullUpDnControl (buttonPin, PUD UP): //pull up to high level
while (1) {
reading = digitalRead (buttonPin); //read the current state of button
if( reading !'= lastbuttonState){ //if the button state has changed ,record the
time point

lastChangeTime = millis();

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 2 Button & LED

//if changing-state of the button last beyond the time we set, we considered that
//the current button state is an effective change rather than a buffeting
if(millis() - lastChangeTime > captureTime) {
//if button state is changed ,update the data.
if (reading != buttonState) {
buttonState = reading;
//if the state is low , the action is pressing
if (buttonState == LOW) {
printf ("Button is pressed!\n”);
ledState = !ledState;
if(ledState) {
printf (“turn on LED ... \n");
}
else {
printf ("turn off LED ... \n");

}
//if the state is high , the action is releasing
else {

printf ("Button is released!\n”);

1
digitalWrite (ledPin, ledState) ;
lastbuttonState = reading;

}

return 0;

This code focuses on eliminating the buffeting of button. We define several variables to save the state of LED
and button. Then read the button state in while () constantly, and determine whether the state has changed.
If it is, record this time point.

reading = digitalRead (buttonPin); //read the current state of button
if( reading != lastbuttonState) {
lastChangeTime = millis() ;

Returns the number of milliseconds since the Arduino board began running the current program.
Then according to just recorded time point, judge the duration of the button state change. If the duration
exceeds captureTime (buffeting time) we set, it indicates that the state of the button has changed. During that
time, the while () is still detecting the state of the button, so if there is a change, the time point of change will
be updated. Then duration will be judged again until the duration of there is a stable state exceeds the time
we set.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 2 Button & LED www.freenove.com Il

if(millis() - lastChangeTime > captureTime) {
//if button state is changed ,update the data.
if (reading != buttonState) {
buttonState = reading;
Finally, judge the state of Button. And if it is low level, the changing state indicates that the button is pressed,
if the state is high level, then the button is released. Here, we change the status of the LED variable, and then
update the state of LED.
if (buttonState == LOW) {
printf ("Button is pressed!\n”);
ledState = !ledState;
if(ledState) {
printf (“turn on LED ... \n");

}

else {
printf ("turn off LED ...\n");

1
//if the state is high , the action is releasing
else {

printf ("Button is released!\n”);

Python Code 2.2.1 Tablelamp
First observe the project result, and then analyze the code.
1. Use cd command to enter 02.2.1_Tablelamp directory of Python code
2. Use python command to execute python code “Tablelamp.py”.
When the program is executed, press the Button once, then LED is turned on. Press the Button another time,
then LED is turned off.

import RPi.GPIO as GPIO

ledPin = 11 # define the ledPin
buttonPin = 12 # define the buttonPin
ledState = False

def setup():

print ( Program is starting...’)

GPIO0. setmode (GPI0. BOARD) # Numbers GPIOs by physical location

GPIO. setup(ledPin, GPIO.OUT) # Set ledPin’s mode is output

GPIO. setup(buttonPin, GPIO.IN, pull up down=GPIO.PUD UP) # Set buttonPin’ s mode is
input, and pull up to high

def buttonEvent (channel) :#When the button is pressed, this function will be executed

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com

Chapter 2 Button & LED

global ledState

print ( buttonEvent GPI0%d’ %channel)

ledState = not ledState
if ledState :
print ( Turn on LED ... )
else :
print (" Turn off LED ... ")
GPIO. output (ledPin, ledState)
def loop():
#Button detect

GPI0. add_event detect (buttonPin, GPI0. FALLING, callback = buttonEvent, bouncetime=300)

while True:
pass
def destroy(:
GPI0. output (ledPin, GPIO.LOW)
GPI0. cleanup ()

if name_ == main :
setup ()
try:
Loop ()
except KeyboardInterrupt: # When
will be executed.
destroy ()

# Program start from here

# led off

# Release resource

’Ctrl+C’ is pressed, the child program destroy ()

RPi.GPIO provides us with a simple and

effective function to eliminate the jitter, that s

GPIO.add_event_detect(). It uses callback function. Once it detect that the buttonPin has a specified action
FALLING, execute the specified function buttonEvent(). In the function buttonEvent, each time the ledState is

reversed, the state of the LED will be updated.

def buttonEvent (channel) :
global ledState
print ' buttonbvent GPI0%d %channel
ledState = not ledState
if ledState :
print ( Turn on LED ... 7)
else :
print ( Turn off LED ... )
GPIO. output (ledPin, ledState)
def loop():
#Button detect

support@freenove.com Il


http://www.freenove.com/
mailto:support@freenove.com

m Chapter 2 Button & LED www.freenove.com [l

GPIO0. add event detect (buttonPin, GPI0. FALLING, callback = buttonEvent, bouncetime=300)
while True:

pass

Of course, you can also use the same programming idea of C code above to achieve this target.

This is an event detection function. The first parameter specifies the IO port to be detected. The second
parameter specifies the action to be detected. The third parameter specified a function name, the function
will be executed when the specified action is detected. And the fourth parameter is used to set the jitter
time.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 3 LEDBar Graph

Chapter 3 LEDBar Graph

We have learned how to control a LED blinking, and next we will learn how to control a number of LED.

Project 3.1 Flowing Water Light

In this project, we use a number of LED to make a flowing water light.

Component List

Raspberry Pi 3B x1 LED bar graph x1 Resistor 220Q x10
GPIO Extension Board & Wire x1
BreadBoard x1

Jumper

—a--. 4 444444

Component knowledge

Let us learn about the basic features of components to use them better.
LED bar graph
LED bar graph is a component Integration consist of 10 LEDs. There are two rows of pins at its bottom.

1 20 1—|>|:fzo
2 19 219
3 18 3018
4 17 417
5 16 5 {16
6 15 6 D15
7 14 7 > 14
8 13 8 - 13
9 12 9 12
10 11 10-F 11

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 3 LEDBar Graph www.freenove.com .

Circuit

The network label is used in the circuit diagram below, and the pins with the same network label are connected

together.
Schematic diagram
. 3.3V 5V
200 o
[SDAT TXDO -8
200 5 Fr o SCL1 ' SCLA1 RXDO Q-
—L4GPIO4 GPIO18
200 5 S g GPIO17 GPIO17 GPI1023 -
GPI027 GPI027 GPI024 GP1024
200, o GPI022 GP1022 GPIO25 GPIO29
19 mos CEO
20 o 7 21IMISO CE1 |26~
~234{SCLK SCLO28~
ma 7 2L1SDAD GPIO12}32~
291GPIO5 GPIO16|38—
200 o 7, -311GPI06 GP1020 |38~
-331GPI013 GPI021 40—
200 o r. %-GPIO@
GPI1026 Raspberry Pi
2200 o Ly GPIO Extension Shield
0 SCL GND
220Q 10/‘/11 T
L a-—O- g |
Hardware connection
E 5 I . * o " o0 * ® o o0 * o " e 00
5 5 * e e e 0 L ] L ] L R B R B B R I B B B B I B B e o ® & & & & & & & " " " P " O E B PO ODN
E _5 * e e ....I...I.......lﬁ........................I.
E g ..Dﬂéé“’sééééé‘:éé&é‘ss‘: 1 ® % % 8 PR YOO
s | “"zazssiisisagzososs S| L R e
- E B Gb B o Db m
K] . 5-3:588.52.0288558a .
: | 1559833883555¢ 2 A e T i 2
: E‘ * e e e * e e 0 . L] ® ® 9 ® 9 9 9 9 O " O O S " O S e S SO
E % LR II.--‘ . j%gg;%...................
o 2 :
: m ‘ * " " 00 * " " 0 * " " 00

In this circuit, the cathode of LED is connected to GPIO, which is the different from the front circuit. So, LED
will be turned on when GPIO output low level in the program.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 3 LEDBar Graph

Code

This project is designed to make a water lamp. First turn on the first LED, then turn off it. Then turn on the
second LED, and then turn off it....... Until the last LED is turned on, then is turned off. And repeats the process
to achieve the effect of flowing water light.

C Code 3.1.1 LightWater

First observe the project result, and then analyze the code.

1. Use cd command to enter 03.1.1_LightWater directory of C code.

2. Use following command to compile “LightWater.c” and generate executable file “LightWater”.

3. Then run the generated file “LightWater”.

After the program is executed, you will see that LEDBar Graph starts with the flowing water way to be turned
on from left to right, and then from right to left.
The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#tdefine leds 10
int pins[leds] = {0,1,2,3,4,5,6,8,9, 10} ;
void led on(int n)//make led n on
{
digitalWrite(n, LOW);

void led off(int n)//make led n off

{
digitalWrite(n, HIGH);

int main(void)

{

int 1i;
printf ("Program is starting ... \n”);
if (wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen

printf ("setup wiringPi failed !7);

return 1;

}

for(i=0;i<leds;i++) { //make leds pins’ mode is output
pinMode (pins[i], OUTPUT) ;

}

while (1) {

for(i=0;i<leds;i++) { //make led on from left to right

support@freenove.com Il


http://www.freenove.com/
mailto:support@freenove.com

Chapter 3 LEDBar Graph www.freenove.com Il

led on(pins[i]);

delay (100) ;

led_off(pins[i]);

}

for (i=leds-1;i>-1;i—){ //make led on from right to left
led on(pins[i]);

delay (100) ;

led_off(pins[i]);

}
return 0;
}
In the program, configure the GPIO0-GPIO9 to output mode. Then, in the endless “while” cycle of main
function, use two “for” cycle to realize flowing water light from left to right and from right to left.
while (1) {
for (i=0;i<leds;i++) { //make led on from left to right
led on(pinsli]):
delay (100) ;
led off (pins[il);

——

}

for(i=leds-1;i>-1;i—){ //make led on from right to left
led on(pins[i]);

delay (100) ;

led off(pins[il);

——
——

Python Code 3.1.1 LightWater
First observe the project result, and then analyze the code.
1. Use cd command to enter 03.1.1_LightWater directory of Python code.

2. Use Python command to execute Python code “LightWater.py”.

After the program is executed, you will see that LEDBar Graph starts with the flowing water way to be turned
on from left to right, and then from right to left.
The following is the program code:

import RPi.GPIO as GPIO

import time

ledPins = [11, 12, 13, 15, 16, 18, 22, 3, 5, 24]

def setup():
print ( Program is starting...’)
GPIO0. setmode (GPI0. BOARD) # Numbers GPIOs by physical location

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 3 LEDBar Graph

for pin in ledPins:
GPI0. setup(pin, GPIO.OUT) # Set all ledPins’ mode is output
GPI0. output (pin, GPIO.HIGH) # Set all ledPins to high(+3.3V) to off led

def loop():
while True:

for pin in ledPins: #make led on from left to right
GPIO. output (pin, GPIO.LOW)
time. sleep (0. 1)
GPIO. output (pin, GPIO.HIGH)

for pin in ledPins[10:0:-1]: #imake led on from right to left
GPIO. output (pin, GPIO.LOW)
time. sleep (0. 1)
GPI0. output (pin, GPIO.HIGH)

def destroy():
for pin in ledPins:
GPI0. output (pin, GPIO.HIGH) # turn off all leds

GPI0. cleanup () # Release resource
if name_ == main : # Program start from here
setup ()
try:
Loop ()

except KeyboardInterrupt: # When ’Ctrl+C’ is pressed, the child program destroy ()
will be executed.

destroy ()

In the program, first define 10 pins connected to LED, and set them to output mode in subfunction setup().

Then in the loop() function, use two “for” cycles to realize flowing water light from right to left and from left

to right. Among them, ledPins[10:0:-1] is used to traverse elements of ledPins in reverse order.
def loop():

while True:

for pin in ledPins: ftmake led on from left to right
GPIO. output (pin, GPIO.LOW)
time. sleep (0. 1)
GPIO. output (pin, GPIO.HIGH)
for pin in ledPins[10:0:-1]: #imake led on from right to left
GPIO. output (pin, GPIO.LOW)
time. sleep (0. 1)
GPIO. output (pin, GPIO.HIGH)

support@freenove.com Il


http://www.freenove.com/
mailto:support@freenove.com

m Chapter 4 Analog & PWM www.freenove.com [l

Chapter 4 Analog & PWM

In previous study, we have known that one button has two states: pressed and released, and LED has light-
on/off state, then how to enter a middle state? How to output an intermediate state to let LED "semi bright"?
That's what we're going to learn.

First, let's learn how to control the brightness of a LED.

Project 4.1 Breathing LED

Breathing light, that is, LED is turned from off to on gradually, gradually from on to off, just like "breathing".
So, how to control the brightness of a LED? We will use PWM to achieve this target.

Component List

Raspberry Pi 3B x1 LED x1 Resistor 220Q x1
GPIO Extension Board & Wire x1
BreadBoard x1

Jumper

—a--. 4 444444

Circuit knowledge

Analog & Digital

The analog signal is a continuous signal in time and value. On the contrary, digital signal is a discrete signal
in time and value. Most signals in life are analog signals, for example, the temperature in one day is
continuously changing, and will not appear a sudden change directly from 0°C to 10°C, while the digital signal
is a jump change, which can be directly from 1 to 0.

Their difference can be illustrated by the following figure.

ANALOG DIGITAL

N
V4

N
t 7t

In practical application, we often use binary signal as digital signal, that is 0 and 1. The binary signal only has

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 4 Analog & PWM

two forms (0 or 1), so it has strong stability. And digital signal and analog signal can be converted to each
other.

PWM

PWM, namely Width Modulation Pulse, is a very effective technique for using digital signals to control analog
circuits. The common processors can not directly output analog signals. PWM technology make it very
convenient to achieve this purpose.

PWM technology uses digital pins to send certain frequency of square waves, that is, the output of high level
and low level that last for a while alternately. The total time for each set of high level and low level is generally
fixed, which is called period (the reciprocal of the period is frequency). The time of high level outputting is
generally called pulse width, and the percentage of pulse width is called duty cycle.

The longer the output of high level last, the larger the duty cycle and the larger the corresponding voltage in
analog signal will be. The following figures show how the analog signals voltage vary between 0V-5V (high
level is 5V) corresponding to the pulse width 0%-100%:

ANALOG
AU DIGITAL
5V
0% Duty Cycle N ‘ N
0 > .
AU
5V
25% Duty Cycle *I H —l W H
0 > .
NV F'urszn\z(ijdth
5v —
50% Duty Cycle T §‘ _‘
0 > t
MNU
5v —
75% Duty Cycle
0 > .
AU
5V —
100% Duty Cycle
0 >

The larger PWM duty cycle is, the lager the output power will be. So we can use PWM to control the brightness
of LED, the speed of DC motor and so on.

It is evident from the above that PWM is not real analog, and the effective value of the voltage is equivalent
to the corresponding analog. so, we can control the output power of the LED and other output modules to
achieve different effects.

In RPi, only GPIO18 has the ability to output PWM with a 10-bit accuracy, that is, 100% of the pulse width can
be divided into 2'°=1024 equal parts.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

m Chapter 4 Analog & PWM www.freenove.com [l

Circuit
Schematic diagram Hardware connection
3.3V 5V | . * e o 0 L B B B o e 9 0 .
—31SDA1 TXDO }-8— E .o .
—21scL1 RXDO |10 e 2 ||
—‘L‘GP|O4 GP|O18 ‘2 E cg B I O O .
gGPlO‘IT GP|023 ‘g : .é ‘"B X EEEREEEEEEREDNR. "I::
z PORNCHS LSS0 SRS IR
513pi0ss  Gpiosslze :E 55CS5HEEHE500" SARRRN
~191Mos| CEOQ 24— = o el @ © oo é
211IMISO CE1 (8- E 892,.52.22585255- REEEL
~23{SCLK SCLO (&8 B §3%3333¢% i
2L1SDAD GPIO12}32~ B D e e ey v e ey
_29_‘GP|05 GP|O16|_&6_ E é --------- R EEEREEREERE R R R e
-211GPI06 GPI020}38~ Y &l o
-231GPIO13 GPIO21}40- 2 X & o ———=
-321GPI019 : o
GPIO26 Raspberry Pi
GPIO Extension Shield
GND %m
2200

Code

This project is designed to make PWM output GPIO18 with pulse width increasing from 0% to 100%, and then
reducing from 100% to 0% gradually.
C Code 4.1.1 BreathingLED
First observe the project result, and then analyze the code.
1. Use cd command to enter 04.1.1_BreathingLED directory of C code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/04.1.1_BreathingLED
2. Use following command to compile “BreathingLED.c” and generate executable file “BreathingLED".
gcc BreathingLED.c —o BreathingLED -IlwiringPi
3. Then run the generated file “BreathingLED”
sudo ./ BreathingLED
After the program is executed, you'll see that LED is turned from on to off and then from off to on gradually
like breathing.
The following is the program code:

1 #include <wiringPi.h>

2 #include <stdio.h>

3 #define ledPin 1 //Only GPIO18 can output PWM

4 int main(void)

5 {

§) int 1i;

7 if(wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
8 printf ("setup wiringPi failed !7);

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 4 Analog & PWM m

return 1;

pinMode (1edPin, PWM_OUTPUT) ;//pwm output mode
while (1) {
for (i=0;1<1024;i++) {
pwmWrite (ledPin, i);
delay (2) ;
}
delay (300) ;
for (i=1023;1>=0;i-) {
pwmWrite (ledPin, 1i);
delay (2) ;
}
delay (300) ;
}

return 0;

}
Since only GPIO18 of RPi has hardware capability to output PWM, the ledPin should be defined as 1 and set
its output mode to PWM_OUTPUT based on the corresponding chart for pins.
! pinMode (1edPin, PWM_OUTPUT) ;//pwm output mode
There are two “for” cycles in the next endless “while” cycle. The first makes the ledPin output PWM from 0% to
100% and the second makes the ledPin output PWM from 100% to 0%.
while (1) {
for (1=0;1<1024;i++) {
pwvmWrite (ledPin, 1i);
delay (2) ;

}

delay (300) ;

for (1=1023;i>=0;i—) {
pwnWrite (ledPin, 1i);
delay (2) ;

1

delay(300) ;

}

You can also adjust the rate of the state change of LED by changing the parameters of the delay() function in

the “for” cycle.

Writes the value to the PWM register for the given pin. The Raspberry Pi has one on-board PWM pin, pin
1 (BCM_GPIO 18, Phys 12) and the range is 0-1024. .

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 4 Analog & PWM www.freenove.com Il

Python Code 4.1.1 BreathingLED
First observe the project result, and then analyze the code.
1. Use cd command to enter 04.1.1_BreathingLED directory of Python code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/04.1.1_BreathingLED
2. Use python command to execute python code “BreathingLED.py".
python BreathingLED.py
After the program is executed, you'll see that LED is turned from on to off and then from off to on gradually
like breathing.
The following is the program code:
import RPi.GPIO as GPIO
import time
LedPin = 12
def setup():
global p
GPI0. setmode (GPI10. BOARD) # Numbers GPIOs by physical location
GPI0. setup(LedPin, GPIO. OUT) # Set LedPin’ s mode is output
GPI0. output (LedPin, GPIO.LOW) # Set LedPin to low

p = GPIO. PWM(LedPin, 1000) # Set Frequency to 1KHz
p. start (0) # Duty Cycle = 0
def loop():
while True:
for dc in range(0, 101, 1): # Increase duty cycle: 07100
p. ChangeDutyCycle (dc) # Change duty cycle

time. sleep (0. 01)
time. sleep (1)
for dc in range(100, -1, —1): # Decrease duty cycle: 10070
p. ChangeDutyCycle (dc)
time. sleep (0. 01)
time. sleep (1)
def destroy():
p. stop ()
GPIO. output (LedPin, GPIO.LOW) # turn off led
GPIO. cleanup ()
if name == main : # Program start from here
setup ()
try:
Loop()
except KeyboardInterrupt: # When ’Ctrl+C’ is pressed, the child program destroy ()
will be executed.

destroy ()

LED is connected to the IO port called GPIO18. And LedPin is defined as 12 and set to output mode according
to the corresponding chart for pins. Then create a PWM instance and set the PWM frequency to 1000HZ, the
initial duty cycle to 0%.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 4 Analog & PWM

LedPin = 12
def setup():
global p
GPI0. setmode (GPI0. BOARD) # Numbers GPIOs by physical location
GPI0. setup(LedPin, GPIO.OUT) # Set LedPin’ s mode is output
GPIO. output (LedPin, GPIO.LOW) # Set LedPin to low
p = GPIO.PWM(LedPin, 1000) # Set Frequency to 1KHz
p. start (0) # Duty Cycle = 0
There are two “for” cycles used to realize breathing LED in the next endless “while” cycle. The first makes the
ledPin output PWM from 0% to 100% and the second makes the ledPin output PWM from 100% to 0%.

def loop():
while True:
for dc in range(0, 101, 1): # Increase duty cycle: 07100
p. ChangeDutyCycle (dc) # Change duty cycle

time. sleep (0. 01)
time. sleep (1)
for dc in range(100, -1, —1): # Decrease duty cycle: 10070
p. ChangeDutyCycle (dc)
time. sleep (0. 01)
time. sleep (1)
The related functions of PWM are described as follows:

To create a PWM instance:

To start PWM:, where dc is the duty cycle (0.0 <= dc <= 100.0)

To change the frequency, where freq is the new frequency in Hz

To change the duty cycle, where 0.0 <= dc <= 100.0

To stop PWM.
For more details about usage method for PWM of RPi.GPIO, please refer to:
https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com
https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/

Chapter 5 RGBLED www.freenove.com [l

Chapter 5 RGBLED

In this chapter, we will learn how to control a RGBLED.

RGB LED has integrated 3 LEDs that can respectively emit red, green and blue light. And it has 4 pins. The
long pin (1) is the common port, that is, 3 LED 's positive or negative port. The RGB LED with common positive
port and its symbol are shown below. We can make RGB LED emit various colors of light by controlling these
3 LEDs to emit light with different brightness,

Ve ‘
W R G B
R tx
213 2 3 4

Red, green, and blue light are called 3 primary colors. When you combine these three primary-color light with
different brightness, it can produce almost all kinds of visible lights. Computer screens, single pixel of cell
phone screen, neon, and etc. are working under this principle.

RGB

If we use three 8 bit PWM to control the RGBLED, in theory, we can create 2°+2°+2°=16777216 (16 million)
color through different combinations.
Next, we will use RGBLED to make a colorful LED.

Project 5.1 Colorful LED

In this project, we will make a colorful LED. And we can control RGBLED to switch different colors automatically.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B wvww.freenove.com

Chapter 5 RGBLED

™ st sesscBecins e
VA e e 8 00 * o 00
m I_--_I L e e 00 * o 00 LN )
N s 6ll ssessl cense |loe
2 L e o 0 00 e & s 00 L ]
m L e e 9 00 * o s 00 e o
..Mm e o o 00 * o 0 00
wn L e ® o 00 e o 0 00 L ]
e L e ® ° 00 e o 0 00 L 3
o
fcfolfodofxlidededded<] M i
WWSRM%EBNZGNZ M b G- =
- b2 2 Id L e s 0 * s 00 . »
XXDDDDCCCDDDD PH L ) L B * s s 0 . »
F¥aoooo DEooo £S5 so|coooee M eoses =|[eo
I_kVu GGGG GGGG mn L s s 0 * s 00 . -
.ﬂl] o O .. Y s s 000 Ty
W | e ————— SSD s 0 000 s 0 00
’I )[ anNI LI LI R B ) s s 8 8 0 ..
- = R..nlmG () e o 0 0 s s 0 00 Ty
— N —— ™ %
A S I 0228 U Lt Bd s
W_L MUDDDD&OMMDDDDD% U] TN LR LI
m DCDIDIDIDIOQIUCDDIDIDIDIDI G " LRI I ) s s 8 0 ™
Q DHOOBOSSHHOOEOO Hx\l\lﬂ.ﬂ:ﬂ e
SRRREEEREEREREE | :
S o
. S0IdD®
. ovase
o= ¢ g . ano®
=828 [ 28 > Adse
1 Ll
< . ISON®
= B W‘Nw‘ Z ¢ £AE®
] : . , :
k%) e S .
— | 8 c S :
+— X o © 3 *
(- om
[} ™ 5 8 m
m Dv., m .m w M PlaIys uoisuaix3 OIdo Id Aueqdsey
p m m Dw Nu ..W._ ..m w EEERRERREREEREEEEREEEEEREERERERREEERRREREEREREE,
- 2 O ® 2 O 9] 5
Q £ O & = O A T
@) -

support@freenove.com [l



http://www.freenove.com/
mailto:support@freenove.com

Chapter 5 RGBLED www.freenove.com [l

Code

Since this project requires 3 PWM, but in RPi, only one GPIO has the hardware capability to output PWM, we
need to use the software to make the ordinary GPIO output PWM.

C Code 5.1.1 ColorfulLED

First observe the project result, and then analyze the code.

1. Use cd command to enter 05.1.1_ColorfulLED directory of C code.

2. Use following command to compile “ColorfulLED.c” and generate executable file “ColorfulLED". Note: in
this project, the software PWM uses a multi-threading mechanism. So “-Ipthread” option need to be add
the compiler.

3. And then run the generated by “ColorfulLED".

After the program is executed, you will see that the RGBLED shows light of different color randomly.
The following is the program code:

#include <wiringPi.h>
#include <softPwm. h>
#include <stdio.h>

f#define ledPinRed 0
#define ledPinGreen 1
f#define ledPinBlue 2

void ledInit (void)

{
softPwmCreate (1edPinRed, 0, 100):
softPwmCreate (1edPinGreen, 0, 100) ;
softPwmCreate (1edPinBlue, 0, 100):

void ledColorSet (int r_val, int g val, int b_val)
{
softPwmWrite (1edPinRed, r val);
softPwmWrite (ledPinGreen, g val);
softPwmWrite (ledPinBlue, b val);

int main(void)
{
int r, g, b;
if(wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen

printf ("setup wiringPi failed !7);

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 5 RGBLED

return 1;
}
printf ("Program is starting ...\n");
ledInit () ;

while (1) {
r=random () %100;
g=random () %100;
b=random () %100;
ledColorSet (r, g, b) ;
printf ("r=%d, g=%d, b=%d \n”, 1, g b);
delay (300) ;
}

return 0;

——

First, in subfunction of ledInit(), create the software PWM control pins used to control the R G, RGBLED, B pin
respectively.

void ledInit (void)
{

softPwmCreate (1edPinRed, 0, 100):

softPwmCreate (1edPinGreen, 0, 100) ;

softPwmCreate (1edPinBlue, 0, 100):
}

Then create subfunction, and set the PWM of three pins.

void ledColorSet (int r val, int g val, int b val)

{
softPwmWrite (1edPinRed, r val);
softPwmWrite (ledPinGreen, g val);
softPwmWrite (ledPinBlue, b val);

}

Finally, in the “while” cycle of main function, get three random numbers and specify them as the PWM duty

cycle, which will be assigned to the corresponding pins. So RGBLED can switch the color randomly all the time.

while (1) {

r=random () %100;

g=random () %100;

b=random () %100;

ledColorSet (r, g, b) ;

printf ("r=%d, g=%d, b=%d \n”,r, g b);

delay (300) ;

—

support@freenove.com Il


http://www.freenove.com/
mailto:support@freenove.com

Chapter 5 RGBLED www.freenove.com Il

The related function of Software PWM can be described as follws:

This creates a software controlled PWM pin.

This updates the PWM value on the given pin.

This function will return a random number.

For more details about Software PWM, please refer to: http://wiringpi.com/reference/software-pwm-library/

Python Code 5.1.1 ColorfulLED
First observe the project result, and then analyze the code.
1. Use cd command to enter 05.1.1_ColorfulLED directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/05.1.1_ColorfulLED
2. Use python command to execute python code “ColorfulLED.py”.

python ColorfulLED.py
After the program is executed, you will see that the RGBLED shows light of different color randomly.
The following is the program code:

import RPi.GPIO as GPIO

import time

import random

pins = {"pin R :11, ’pin G :12, ’pin B’ :13} # pins is a dict

def setup():

global p R,p_G,p B

print ( Program is starting ... )

GPIO. setmode (GPI0. BOARD) # Numbers GPIOs by physical location

for i in pins:
GPI0. setup(pins[il], GPIO0.OUT) # Set pins’ mode is output
GPI0. output (pins[i], GPIO.HIGH) # Set pins to high(+3.3V) to off led

p R = GPIO. PW (pins[ pin R'1, 2000) # set Frequece to 2KHz

p G = GPIO.PW (pins[ pin G 1, 2000)

p_B = GPIO. PW (pins[ pin B’ 1, 2000)

p_R. start(0) # Tnitial duty Cycle = 0

p G. start(0)

p_B. start(0)

def setColor(r val, g val,b val):
p_R. ChangeDutyCycle (r val) # Change duty cycle
p_G. ChangeDutyCycle (g val)
p_B. ChangeDutyCycle (b val)

def loop():

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/reference/software-pwm-library/

B www freenove.com Chapter 5 RGBLED

while True :
r=random. randint (0, 100) #get a random in (0, 100)
g=random. randint (0, 100)
b=random. randint (0, 100)
setColor (r, g, b) ##set random as a duty cycle value
print ( r=%d, g=%d, b=%d = %(r ,g b))
time. sleep (0. 3)

def destroy():
p R.stop(Q
p G.stop(Q
p B.stop()
GPI0. cleanup ()

if name_ == main : # Program start from here
setup ()
try:
loop ()
except KeyboardInterrupt: # When ’Ctrl+C’ is pressed, the child program destroy ()
will be executed.

destroy ()

In last chapter, we have learned how to use python language to make a pin output PWM. In this project, we
let three pins output PWM, and the usage is exactly the same as last chapter. In the “while” cycle of “loop”
function, we first obtain three random numbers, and then specify these three random numbers as the PWM
value of the three pins.o that the RGBLED switching of different colors randomly.
def loop():
while True :
r=random. randint (0, 100)

g=random. randint (0, 100)

b=random. randint (0, 100)
setColor (r, g, b)

print C r=%d, g=%d, b=%d ~ %(r ,g, b))
time. sleep(0. 3)

About function randint():

The function can returns a random integer within the specified range (a, b).

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer www.freenove.com Il

Chapter 6 Buzzer

In this chapter, we will learn a component that can sound, buzzer.

Project 6.1 Doorbell

We will make this kind of doorbell: when the button is pressed, the buzzer sounds; and when the button is
released, the buzzer stops sounding.

Component List

Raspberry Pi 3B x1 Jumper
GPIO Extension Board & Wire x1
BreadBoard x1

NPN transistorx1 Active buzzer x1 Push button x1 | Resistor 1kQ x1 | Resistor 10kQ x2

(S8050)

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 6 Buzzer

Component knowledge

Buzzer

Buzzer is a sounding component, which is widely used in electronic devices such as calculator, electronic
warning clock, alarm. Buzzer has active and passive type. Active buzzer has oscillator inside, and it will sound
as long as it is supplied with power. Passive buzzer requires external oscillator signal (generally use PWM with
different frequency) to make a sound.

Active buzzer Passive buzzer

=+
L

1
+—
-

L
=
T

Active buzzer is easy to use. Generally, it can only make a specific frequency of sound. Passive buzzer
requires an external circuit to make a sound, but it can be controlled to make a sound with different
frequency. The resonant frequency of the passive buzzer is 2kHz, which means the passive buzzer is loudest
when its resonant frequency is 2kHz.

Next, we will use an active buzzer to make a doorbell and a passive buzzer to make an alarm.

Transistor
Due to the current operating of buzzer is so large that GPIO of RPi output capability can not be satisfied, a
transistor of NPN type is needed here to amplify the current.

Transistor, the full name: semiconductor transistor, is a semiconductor device that controls current. Transistor
can be used to amplify weak signal, or works as a switch. It has three electrodes(PINs): base (b), collector (c)
and emitter (e). When there is current passing between "be", "ce" will allow several-fold current (transistor
magnification) pass, at this point, transistor works in the amplifying area. When current between "be" exceeds
a certain value, "ce" will not allow current to increase any longer, at this point, transistor works in the saturation
area. Transistor has two types shown below: PNP and NPN,

PNP transistor NPN transistor
11 E 3]1C
P 5 B 3
B B
192083 3]c 14203 11E
E B C E B C

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

m Chapter 6 Buzzer www.freenove.com [l

According to the transistor's characteristics, it is often used as a switch in digital circuits. For micro-controller's
capacity of output current is very weak, we will use transistor to amplify current and drive large-current
components.

When use NPN transistor to drive buzzer, we often adopt the following method. If GPIO outputs high level,
current will flow through R1, the transistor gets conducted, and the buzzer make a sound. If GPIO outputs low
level, no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

When use PNP transistor to drive buzzer, we often adopt the following method. If GPIO outputs low level,
current will flow through R1, the transistor gets conducted, buzzer make a sound. If GPIO outputs high level,
no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

NPN transistor to drive buzzer PNP transistor to drive buzzer
5V 5V

L R1

1
B 1kQ
2] |:|T uzzer E_,\/\/\/\,___IZCH

R1
1kQ 1
Pin Q1 ?D Buzzer
T

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B wvww.freenove.com

Chapter 6 Buzzer

Circuit

Schematic diagram

1
2
T R2
33V 5V i
—3.1SDA1 TXDO }=8—
5 —2.1SCL1 RXDOMOQ- o
N —LIGPIO4 GPIO18 : !
N 11 lGPIO17 GPI023 |16
_ Ky =134dGPIO27 GPI024 {18
-131GP1022 GPI025 |22
~194mosI CEO0}24-
21IMISO CE1}ef- £
-23.1SCLK SCLO }28- .
~2L1SDAD GPIO12}32 Bt
291GPIO5 GPIO16 }35—
S11GPIO6 GPI020 }-38
-331GPIO13 GPI021 40
%-GPIO&
GPI026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection

: * e e 00 e o ® 00 * e 8 00 * e 9 00 L L * e 000 L . L L B L I B B .
: o e e 9 00 e e 9 00 * e 9 00 L B L L B L . L L L B B .
= ©

- £

: ‘2 ® 9 9 8 9 P e e P Y EEY Y Y Y LN ® ® 9 9 " " 00 e YOO
— o B —————————————————————E A R .. ® % 9 0 9 0 0 0 0 s e e e e
— 'g o wJlllj" o v o s s s 00 0 ® e s s s s s s e e e
- ] ® s 805 e s s s e s ® s 8 0 00 00000 s
- L’I.‘I LA NN ¢ G ¢ P Ve T I VTV I TeT TN
= Q

— o

- Gl . S—-S2a0988 B2_a22899029 e e ® % 6 0 e s e s e e e e e e e e e e e e e
- = ® e e e s e ® 9 9 e s e e e e e T
- > i Jlllgme o v o o ® 9 S e S e P e e e
— = D & 8 s o s b s e L I I R I O O I I I T I O B O )
: -8 L B B B N B B ® ® S & " S S S S S eSS
— Q

- 7]

- ]

= o ee 00 se s e L . e e 0
- o e e . . . ..

Note: in this circuit, the power supply for buzzer is 5V, and pull-up resistor of the button connected to the
power 3.3V. The buzzer can work when connected to power 3.3V, but it will reduce the loudness.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer www.freenove.com [l

Code

In this project, buzzer is controlled by the button. When the button is pressed, the buzzer sounds. And when
the button is released, the buzzer stops sounding. In the logic, it is the same to using button to control LED.
C Code 6.1.1 Doorbell

First observe the project result, and then analyze the code.

1. Use cd command to enter 06.1.1_Doorbell directory of C code.

2. Use following command to compile “Doorbell.c” and generate executable file “Doorbell.c”.

3. Then run the generated file “Doorbell”.

After the program is executed, press the button, then buzzer sounds. And when the button is release, the
buzzer will stop sounding.
The following is the program code:

#include <wiringPi.h>
#include <stdio.h>

ttdefine buzzeRPin 0 //define the buzzeRPin
ttdefine buttonPin 1 //define the buttonPin

int main(void)
{
if (wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
printf ("setup wiringPi failed !7);

return 1;

pinMode (buzzeRPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;

pullUpDnControl (buttonPin, PUD UP): //pull up to high level
while (1) {

if(digitalRead (buttonPin) == LOW) { //button has pressed down
digitalWrite (buzzeRPin, HIGH); //buzzer on
printf ("buzzer on...\n");

}

else { //button has released
digitalWrite (buzzeRPin, LOW); //buzzer off
printf (", .. buzzer off\n”);

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com

Chapter 6 Buzzer

return 0;

}
The code is exactly the same to using button to control LED logically. You can try to use the PNP transistor to
achieve the function of his circuit once again.
Python Code 6.1.1 Doorbell
First observe the project result, then analyze the code.
1. Use cd command to enter 06.1.1_Doorbell directory of Python code.

2. Use python command to execute python code “Doorbell.py”.

After the program is executed, press the button, then buzzer sounds. And when the button is released, the
buzzer will stop sounding.

The following is the program code:
import RPi.GPIO as GPIO

buzzerPin

buttonPin

11 # define the buzzerPin
12 # define the buttonPin

def setup():
print ( Program is starting...’)
GPI0. setmode (GPTO0. BOARD) # Numbers GPIOs by physical location
GPIO0. setup(buzzerPin, GPIO. OUT) # Set buzzerPin’ s mode is output

GPIO0. setup(buttonPin, GPIO.IN, pull up down=GPIO.PUD UP)

# Set buttonPin’ s mode is
input, and pull up to high level (3. 3V)

def loop():
while True:

if GPIO. input (buttonPin)==GPI0. LOW:
GPI0. output (buzzerPin, GPI0. HIGH)
print ( buzzer on ...")

else :
GPIO. output (buzzerPin, GPI0. LOW)
print C buzzer off ...")

def destroy():

GPIO. output (buzzerPin, GPIO.LOW) # buzzer off

GPIO. cleanup () # Release resource

if name == main : # Program start from here
setup ()

try:
Loop ()

support@freenove.com Il


http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer www.freenove.com Il

except KeyboardInterrupt: # When 'Ctrl+C’ is pressed, the child program destroy ()
will be executed.

destroy ()

The code is exactly the same to using button to control LED logically. You can try to use the PNP transistor
to achieve the function of his circuit once again.

Project 6.2 Alertor

Next, we will use a passive buzzer to make an alarm.
Component list and the circuit part is the similar to last section. In the Doorbell circuit only the active buzzer
needs to be replaced with a passive buzzer.

Code

In this project, the buzzer alarm is controlled by the button. Press the button, then buzzer sounds. If you
release the button, the buzzer will stop sounding. In the logic, it is the same to using button to control LED.
In the control method, passive buzzer requires PWM of certain frequency to sound.
C Code 6.2.1 Alertor
First observe the project result, and then analyze the code.
1. Use cd command to enter 06.2.1_Alertor directory of C code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/06.2.1_Alertor
2. Use following command to compile “Alertor.c” and generate executable file “Alertor”. “-Im” and “-Ipthread”
compiler options are needed to add here.
gcc Alertor.c —o Alertor —lwiringPi —Im -Ipthread
3. Then run the generated file “Alertor”.
sudo ./ Alertor
After the program is executed, press the button, then buzzer sounds. And when the button is release, the
buzzer will stop sounding.
The following is the program code;

#include <wiringPi.h>
#include <stdio.h>
#include <softTone.h>
#include <math.h>
#define buzzeRPin 0 //define the buzzeRPin
#define buttonPin 1 //define the buttonPin
void alertor (int pin) {
int x;
double sinVal, toneVal;
for (x=0;x<360;x++) { // The frequency is based on the sine curve
sinVal = sin(x * (M_PI / 180)):
toneVal = 2000 + sinVal * 500;
softToneWrite (pin, toneVal) ;
delay (1) ;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 6 Buzzer

1
void stopAlertor (int pin) {
softToneWrite (pin, 0) ;
1
int main(void)
{
if(wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
printf ("setup wiringPi failed !7);
return 1;
}
pinMode (buzzeRPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;
softToneCreate (buzzeRPin) ;
pullUpDnControl (buttonPin, PUD UP); //pull up to high level

while (1) {
if(digitalRead (buttonPin) == LOW) { //button has pressed down
alertor (buzzeRPin);  //buzzer on

printf (“alertor on...\n”);

1
else { //button has released
stopAlertor (buzzeRPin);  //buzzer off

printf(”. .. buzzer off\n”);

}

return 0;

}
The code is the same to the active buzzer logically, but the way to control the buzzer is different. Passive
buzzer requires PWM of certain frequency to control, so you need to create a software PWM pin though
softToneCreate (buzzeRPin). Here softTone is dedicated to generate square wave with variable frequency and
duty cycle fixed to 50%, which is a better choice for controlling the buzzer.
! softToneCreate (buzzeRPin) ;
In the while cycle of main function, when the button is pressed, subfunction alertor() will be called and the
alertor will issue a warning sound. The frequency curve of the alarm is based on the sine curve. We need to
calculate the sine value from 0 to 360 degree and multiply a certain value (here is 500) and plus the resonant
frequency of buzzer. We can set the PWM frequency through softToneWrite (pin, toneVal).

void alertor (int pin) {

int x;

double sinVal, toneVal;

for (x=0;x<360;x++) { //The frequency is based on the sine curve
sinVal = sin(x * (M _PI / 180)):
toneVal = 2000 + sinVal * 500;
softToneWrite (pin, toneVal) ;
delay (1) ;

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

m Chapter 6 Buzzer www.freenove.com [l

}
}

If you want to close the buzzer, just set PWM frequency of the buzzer pin to 0.

void stopAlertor (int pin) {
softToneWrite (pin, 0) ;

}

The related functions of softTone is described as follows:

This creates a software controlled tone pin.

This updates the tone frequency value on the given pin.

For more details about softTone, please refer to :http://wiringpi.com/reference/software-tone-library/
Python Code 6.2.1 Alertor
First observe the project result, and then analyze the code.
1. Use cd command to enter 06.2.1_Alertor directory of Python code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/06.2.1_Alertor
2. Use the python command to execute the Python code “Alertor.py”.
python Alertor.py
After the program is executed, press the button, then the buzzer sounds. When the button is released, the
buzzer will stop sounding.

The following is the program code:
import RPi.GPIO as GPIO

import time

import math

11 # define the buzzerPin
12 # define the buttonPin

buzzerPin

buttonPin

def setup():

global p
print ( Program is starting...’)
GPIO. setmode (GPI0. BOARD) # Numbers GPIOs by physical location

GP10. setup (buzzerPin, GPI0.OUT)  # Set buzzerPin’s mode is output

GP10. setup (buttonPin, GPIO.IN, pull up down=GPI0.PUD UP) # Set buttonPin’s mode is
input, and pull up to high level (3.3V)

p = GPIO. PW(buzzerPin, 1)

p. start (0) ;
def loop():
while True:
if GPIO. input (buttonPin)==GPI0. LOW:
alertor()
print ( buzzer on ...")
else :

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/reference/software-tone-library/

B www freenove.com Chapter 6 Buzzer

stopAlertor ()
print ( buzzer off ...")
def alertor():
p. start (50)
for x in range(0, 361) : #tfrequency of the alarm along the sine wave change
sinVal = math. sin(x * (math.pi / 180.0)) ticalculate the sine value
toneVal = 2000 + sinVal % 500 #Add to the resonant frequency with a Weighted
p. ChangeFrequency (toneVal) #toutput PWM
time. sleep(0.001)

def stopAlertor():

p. stop()
def destroy():

GPI0. output (buzzerPin, GPI0.LOW) # buzzer off

GPI0. cleanup () # Release resource
if name_ == main : # Program start from here

setup ()

try:

loop ()

except KeyboardInterrupt: # When ’Ctrl+C’ is pressed, the child program destroy ()

will be executed.

destroy ()

The code is the same to the active buzzer logically, but the way to control the buzzer is different. Passive

buzzer requires PWM of certain frequency to control, so you need to create a software PWM pin through

softToneCreate (buzzeRPin). The way to create PWM is also introduced before in the sections about

BreathingLED and RGBLED.
def setup():

global p
print ( Program is starting...’)
GPI0. setmode (GPI0. BOARD) # Numbers GPIOs by physical location

GPI0. setup(buzzeRPin, GPIO. OUT) # Set buzzeRPin’s mode is output

GP10. setup (buttonPin, GPIO.IN, pull up down=GPI0.PUD UP) # Set buttonPin’s mode is
input, and pull up to high level (3.3V)

p = GPIO. PWM(buzzeRPin, 1)

p. start (0) ;

In the while cycle of main function, when the button is pressed, subfunction alertor() will be called and the
alertor will issue a warning sound. The frequency curve of the alarm is based on the sine curve. We need to
calculate the sine value from 0 to 360 degree and multiply a certain value (here is 500) and plus the resonant
frequency of buzzer. We can set the PWM frequency through p.ChangeFrequency(toneVal).
def alertor():
p. start (50)
for x in range(0, 361) :
sinVal = math. sin(x * (math.pi / 180.0))
toneVal = 2000 + sinVal * 500

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 6 Buzzer

www.freenove.com .

p. ChangeFrequency (toneVal)
time. sleep(0.001)

When the button is released, the buzzer will be closed.

def stopAlertor():
p. stop ()

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 7 PCF8591 m

Chapter 7 PCF8591

We have learned how to control the brightness of LED through PWM and understood that PWM is not the
real analog before. In this chapter, we will learn how to read analog quantities through PCF8591, convert it
into digital quantity and convert the digital quantity into analog output. That is, ADC and DAC.

Project 7.1 Read the Voltage of Potentiometer

In this project, we will use the ADC function of PCF8591 to read the voltage value of potentiometer. And then
output the voltage value through the DAC to control the brightness of LED.

Component List

Raspberry Pi 3B x1 Jumper

GPIO Extension Board & Wire x1
— . 44444
BreadBoard x1

Rotary potentiometer x1 | PCF8591 x1 Resistor 10kQ x2 | Resistor 220Q x1 | LED x1

e
M
-
o=
(0p]
)
=

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

m Chapter 7 PCF8591 www.freenove.com [l

Circuit knowledge

ADC

ADC, Analog-to-Digital Converter, is a device used to convert analog to digital. The range of the ADC on
PCF8591 is 8 bits, that means the resolution is 228=256, and it represents the range (here is 3.3V) will be
divided equally to 256 parts. The analog of each range corresponds to one ADC values. So the more bits ADC
has, the denser the partition of analog will be, also the higher precision of the conversion will be.

DIGITAL
N

255
254
253
252
251

O N WR:

oV 3.3V 7 ANALOG
Subsection 1: the analog in rang of 0V-3.3/256 V corresponds to digital 0;
Subsection 2: the analog in rang of 3.3 /256 V-2+3.3 /256V corresponds to digital 1;

The following analog will be divided accordingly.

DAC

DAC, that is, Digital-to-Analog Converter, is the reverse process of ADC. The digital I/0 port can output high
level and low level, but can not output an intermediate voltage value, which can be solved by DAC. PCF8591
has a DAC output pin with 8-bit accuracy, which can divide VDD (here is 3.3V) into 2°=256 parts. For example,
when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when the digital quantity is 128,
the output voltage value is 3.3/256 *128=1.65V, the higher accuracy of PCF8591 is, the higher the accuracy
of output voltage value is.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

. www.freenove.com Chapter 7 PCF8591

Component knowledge

Potentiometer

Potentiometer is a resistive element with three Terminal part and the resistance can be adjusted according to
a certain variation. Potentiometer is often made up by resistance and removable brush. When the brush moves
along the resistor body, there will be resistance or voltage that has a certain relationship with displacement
on the output side (3). Figure shown below is the linear sliding potentiometer and its symbol.

»
<& 1

1 32 2

What between potentiometer pin 1 and pin 2 is the resistor body, and pins 3 is connected to brush. When
brush moves from pins 1 to pin 2, the resistance between pin 1, and pin 3 will increase up to body resistance
linearly, and the resistance between pin 2 and pin 3 will decrease down to O linearly.

In the circuit. The both sides of resistance body are often connected to the positive and negative electrode of
the power. When you slide the brush pin 3, you can get a certain voltage in the range of the power supply.

. R1
Pin 3 10kQ)

Rotary potentiometer
Rotary potentiometer and linear potentiometer have similar function; the only difference is: the resistance is
adjusted through rotating the potentiometer.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 7 PCF8591 www.freenove.com [l

PCF8591

The PCF8591 is a single-chip, single-supply low power 8-bit CMOS data acquisition device with four analog
inputs, one analog output and a serial I12C-bus interface.

FEATURES

® Single power supply ® Auto-incremented channel selection
® (Operating supply voltage 25Vto 6V ® Analog voltage ranges from VSS to VDD
® | ow standby current ® On-chip track and hold circuit
® Serial input/output via 12C-bus ® 8-bit successive approximation A/D conversion
® Address by 3 hardware address pins ® Multiplying DAC with one analog output.
® Sampling rate given by 12C-bus speed ® 4 analog inputs programmable as single-ended
® (differential inputs or
PINNING
SYMBOL PIN DESCRIPTION TOP VIEW
AINO 1
AIN1 2 _
Analog inputs (A/D converter)
AIN2 3 U
AIN3 4 AINO [ 1] 16] Voo
AO 5 ;
Al 6 Hardware address AINT E EI AouT
A2 . AIN2 [3] [14] Vrer
Vss 8 Negative supply voltage AIN3 E E AGND
SDA 9 I2C-bus data input/output PCFB8591 ,
SCL 10 12C-bus clock input AD E E EXT
0OSC 11 Oscillator input/output Al E E 0sC
EXT 12 external/internal switch for oscillator '
input A2 E _1_2] SCL
AGND 13 Analog ground Vss E 3] soa
Vref 14 Voltage reference input
AOUT 15 Analog output(D/A converter)
Vdd 16 Positive supply voltage

For more details about PCF8591, please refer to datasheet.

I2C communication

I2C(Inter-Integrated Circuit) is a two-wire serial communication mode, which can be used to connection of
micro controller and its peripheral equipment. Devices using I12C communication must be connected to the
serial data (SDA) line, and serial clock (SCL) line (called I2C bus). Each device has a unique address and can be
used as a transmitter or receiver to communicate with devices connected to the bus.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www .freenove.com

Chapter 7 PCF8591

Circuit

Schematic diagram

_;_ _— 3.3V
LED1 ;’,gé
33 s R 3.3V 5V
10kQ |- o1 3
1-—1\/\/\/\—0 [ SDA1 TXDO 8
= N 2 1scL1 RXDO |10
’w —L1GPIO4 GPlIO18 |2~
- ) 21 AliGPio17 GPI023 16
1 2200 131GPI027 GPI024 |18
; AINO  Vdd 12 121GPI1022 GPI025 |22
e s
—4 JAIN3 AGND 13—1 231SCLK SCLO |28
stno ex2—a|) ~2L1SDAO GPIO12 (32—
6 {1 oscj—11- 291GPIO5 GPIO16 |36
7 {a2 scLl-10 S11GPIO6 GPI1020 |38~
8 lyss  spal-2 33 1GPIO13 GPI1021}40_
PCF8591 _35_ GPIO19
3L GP1026 Raspberry Pi
GPIO Extension Shield
GND
Hardware connection

Raspberry Pi GPIO Extension Shield

GPIO21e K

) . I B B I I I T I
.. . so o fle e e o oo oo 000000000

mmmmm
s e s s s s e e e O I I I T T T
e s o » S e B e e Ee ss e fle s e oo oo oo 00000000
- . e o o Jlllg=s ] o o o ® e e e e e e e e e e
. -III-'- sflecefleceosssssssoooo00e
..... éé 11 B sl Iosss sooes vnovs
----- soelBl sels se e se e e Seeee eewee

support@freenove.com [l



http://www.freenove.com/
mailto:support@freenove.com

The 12C interface raspberry pie is closed in default. You need to open it manually. You can enable the 12C
interface in the following way
Type command in the terminal:
sudo raspi-config
Then open the following dialog box:

— 1 Raspberry Pi Software Configuration Tool (raspi-config) b——

1 Change User Password Change password for the current u

2 Network Options Configure network settings

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional sett

5 Interfacing Options Configure connections to peripher

6 Overclock Configure overclocking for your P

7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest ve

9 About raspi-config Information about this configurat
<Select> <Finish>

Choose “5 Interfacing Options”>“P5 12C">"Yes">“Finish” in order and restart your RPi later. Then the 12C
module is started.
Type a command to check whether the 12C module is started:
Ismod | grep i2¢c
If the I2C module has been started, the following content will be shown:

pi@raspberrypi:

12c_bcm2708

12c_dev

pi@raspberrypi:



http://www.freenove.com/
mailto:support@freenove.com

Type the command to install I2C-Tools.
sudo apt-get install i2c-tools

I2C device address detection:
i2cdetect —y 1

pi@raspberrypi:

Q) 1 & ]

igraspberrypi:

Here 48 (HEX) is the 12C address of PCF8591.

First observe the project result, and then analyze the code.
1. Use cd command to enter 07.1.1_ PCF8591 directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/07.1.1_PCF8591
2. Use following command to compile “PCF8591.c” and generate executable file “PCF8591".

gcc PCF8591.c —o PCF8591 —IwiringPi
3. Then run the generated file “PCF8591".

sudo ./PCF8591
After the program is executed, shift the potentiometer, then the terminal will print out the potentiometer
voltage value and the converted digital content. When the voltage is greater than 1.6V (voltage need to turn
on red LED), LED starts emitting light. If you continue to increase the output voltage, the LED will become
more bright gradually.

o



http://www.freenove.com/
mailto:support@freenove.com

IR Chepter 7 PCF8S91 www.freenove.com [l

The following is the code:

#tinclude <wiringPi.h>
#include <pcf8591.h>
#tinclude <stdio.h>

ttdefine address 0x48 //pcf8591 default address
ttdefine pinbase 64 //any number above 64
f#idefine AO pinbase + 0

ftdefine Al pinbase + 1

ftdefine A2 pinbase + 2

ftdefine A3 pinbase + 3

int main(void) {

int value;

float voltage;

wiringPiSetup () ;

pcf8591Setup (pinbase, address) ;

while (1) {
value = analogRead (A0) ; //read AO pin
analogWrite (pinbase+0, value) ;
voltage = (float)value / 255.0 * 3.3; // calculate voltage
printf ("ADC value : %d ,\tVoltage : % 2fV\n”, value, voltage) ;
delay (100) ;

}
The default I2C address of PCF8591 is 0x48. The pinbase is an any value greater than or equal to 64. And we
have defined the ADC input channel A1, A2, A0, A3 of PCF8591.
ttdefine address 0x48 //pcf8591 default address
ttdefine pinbase 64 //any number above 64
ftdefine AO pinbase + 0
#tdefine Al pinbase + 1
#tdefine A2 pinbase + 2
#tdefine A3 pinbase + 3
In the main function, after PCF8591 is initialized by pcf8591Setup(pinbase, address), you can use the function
analogRead() and analogWrite() to operate the ADC and DAC.
- pcf8591Setup (pinbase, address) ; ‘
In the “while” cycle, analogRead (AO0) is used to read the ADC value of the A0 port (connected potentiometer),
then the read ADC value is output through analogWrite(). And then the corresponding actual voltage value
will be calculated and displayed.
while (1) {
value = analogRead(A0); //read AO pin
analogWrite (pinbase+0, value) ;
voltage = (float)value / 255.0 * 3.3; // calculate voltage
printf ("ADC value : %d ,\tVoltage : % 2fV\n”, value, voltage) ;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

delay (100) ;

}

Details about analogRead() and analogWrite():

void analogWrite (int pin, int value) ; ‘

This writes the given value to the supplied analog pin. You will need to register additional analog modules
to enable this function for devices.

int analogRead (int pin) ;

This returns the value read on the supplied analog input pin. You will need to register additional analog

modules to enable this function for devices.

For more detailed instructions about PCF8591 of wiringPi, please refer to:
http://wiringpi.com/extensiones/i2c-pcf8591/

First install a smbus module, and the command is as follows:

sudo apt-get install python-smbus
After the installation is completed, operate according to the following steps. Observe the project result, and
then analyze the code.
1. Use cd command to enter 07.1.1_pcf8591 directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/07.1.1_pcf8591
2. Use the python command to execute the Python code “pcf8591.py”.

python pcf8591.py
After the program is executed, shift the potentiometer, then the terminal will print out the potentiometer
voltage value and the converted digital content. When the voltage is greater than 1.6V (voltage need to turn
on red LED), LED starts emitting light. If you continue to increase the output voltage, the LED will become
more bright gradually.

The following is the code:

1 import smbus

import time

address = 0x48 #default address of PCF8591
bus=smbus. SMBus (1)

cmd=0x40 #command

~N O O1 B W DN



http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/extensions/i2c-pcf8591/

m Chapter 7 PCF8591 www.freenove.com [l

def analogRead(chn) :#read ADC value, chn:0, 1, 2,3
value = bus. read byte data(address, cmd+chn)

return value

def analogWrite(value) :#twrite DAC value

bus.write byte data(address, cmd, value)

def loop():
while True:
value = analogRead(0)  #read the ADC value of channel 0
analogWrite (value) #twrite the DAC value
voltage = value / 255.0 * 3.3 #calculate the voltage value
print ( ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep(0.01)

def destrov():

bus. close()

__name__ == main

print (' Program is starting ... )

loop 0
except KeyboardInterrupt:

destroy ()

First, define the I2C address and control byte of PCF8591, and then instantiate object bus of SMBus, which
can be used to operate ADC and DAC of PCF8591.

address = 0x48 # default address of PCF8591

bus=smbus. SMBus (1)

cmd=0x40 # command

This subfunction is used to read the ADC. Its parameter “chn” represents the input channel number: 0, 1, 2, 3.
Its return value is the read ADC value.
def analogRead(chn) :# read ADC value, chn:0,1,2,3

value = bus. read byte data(address, cmd+chn)

return value

This subfunction is used to write DAC. Its parameter “value” represents the digital quality to be written,
between 0-255.

def analogWrite(value) :# write DAC value

bus.write byte data(address, cmd, value)

In the “while” cycle, first read the ADC value of channel 0, and then write the value as the DAC digital quality

and output corresponding voltage in the out pin of PCF8591. Then calculate the corresponding voltage value

and print it out.
def loop():

while True:

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 7 PCF8591 m

value = analogRead(0)  #read the ADC value of channel 0

analogWrite (value) # write ADC value
voltage = value / 255.0 * 3.3 # calculate voltage value
print ( ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep (0. 01)

About smbus module:

That is System Management Bus.This module defines an object type that allows SMBus transactions on
hosts running the Linux kernel. The host kernel must have 12C support, 12C device interface support, and a
bus adapter driver. All of these can be either built-in to the kernel, or loaded from modules.

In Python, you can use help(smbus) to view the relevant function and their descriptions.
bus=smbus.SMBus(1): Create an SMBus class object.

bus.read_byte_data(address,cmd+chn): Read a byte of data from an address and return it.
bus.write_byte_data(address,cmd,value): Write a byte of data to an address.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

00l Chapter 8 Potentiometer & LED www.freenove.com [l

Chapter 8 Potentiometer & LED

We have learned how to use ADC and DAC before. When using DAC output analog to drive LED, we found
that, when the output voltage is less than led turn-on voltage, the LED does not light, the output analog
voltage is greater than the LED voltage, the LED will light. This leads to a certain degree of waste of resources.
Therefore, in the control of LED brightness, we should choose a more reasonable way of PWM control. In this
chapter, we learn to control the brightness of LED through a potentiometer.

Project 8.1 Soft Light

In this project, we will make a soft light. Use PCF8591 to read ADC value of potentiometers and map it to duty
cycle ratio of PWM used to control the brightness of LED. Then you can make the LED brightness changed by
shifting the potentiometer.

Component List

Raspberry Pi 3B x1 Jumper
GPIO Extension Board & Wire x1
BreadBoard x1

Rotary potentiometer x1 | PCF8591 x1 Resistor 10kQ x2 | Resistor 220Q x1 | LED x1

—a. A4 44

e
™
T
o=
L
)
=

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www .freenove.com

Chapter 8 Potentiometer & LED

Circuit

The circuit of this project is similar to the one in last chapter. The only difference is that the pin used to control

LED is different.

Schematic diagram

—="VWV'5 %
Tw § R2 33V 5V

w= g% 3ISDAT TXDO =B
21SCL1 RXDO 10
T 1aINO  vdd]-1© —LIGPI04 GPIO18}-12-
—2AINT  Aouth—12- 11 1GPI017 GPI023 116
—3JAIN2  vref|14 131GPI027 GPI024 |18
—2 IAIN3 AGND)-13 2 {GPI022 GPI1025}22
5 a0 Ext Ll—lh 9 Imosi CE0 24—
6 a1 osc -1 21IMIsO CE1}26..
7 A2 scLl—10 231SCLK SCLo 28~
8 lves oA ¢ 2713pA0 GPIO12]32—
Preso] ol =22 GPIOS5 GPIO1636—
+ WL 311GPIos GPI020}38
- Y § -331GpI013 GPI021 40

- R -321GPI019

~3L1GPIO26 Raspberry Pi
GPI0O Extension Shield
i GND
Hardware connection

------------ e s ¢ v CEEEEEEE————

GPIO21e 0

et bt bt bt bt
LR B

e T
TeS940d
.. oo

Raspberry Pi GPIO Extension Shield

RN

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 8 Potentiometer & LED

www.freenove.com Il

Code

C Code 8.1.1 Softlight
First observe the project result, and then analyze the code.
1. Use cd command to enter 08.2.1_Softlight directory of C code.

2. Use following command to compile “Softlight.c” and generate executable file “Softlight”.

3. Then run the generated file “Softlight”.

After the program is executed, shift the potentiometer, then the terminal window will print out the voltage
value of the potentiometer and the converted digital quantity. And brightness of LED will be changed

consequently.
The following is the code:

#tinclude <wiringPi.h>
#tinclude <pcf8591. h>
#include <stdio.h>

#include <softPwm.h>

#tdefine address 0x48 //pcf8591 default address
ttdefine pinbase 64 //any number above 64
#tdefine AO pinbase + 0

#tdefine Al pinbase + 1

ftdefine A2 pinbase + 2

ftdefine A3 pinbase + 3

#tdefine ledPin 0
int main(void) {
int value;
float voltage;
if(wiringPiSetup() == -1){ //when initialize wiring failed, print
printf (“setup wiringPi failed !7);
return 1;
}
softPwmCreate (1edPin, 0, 100) ;
pcf8591Setup (pinbase, address) ;

while (1) {
value = analogRead (A0); //read AO pin
softPwmWrite (1edPin, value*x100/255) :
voltage = (float)value / 255.0 * 3.3; // calculate voltage
printf ("ADC value : %d , \tVoltage : % 2(V\n”, value, voltage) ;
delay (100) ;

message to screen

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 8 Potentiometer & LED

}
return 0;
}
In the code, read ADC value of potentiometers and map it to duty cycle of PWM to control LED brightness.
Python Code 8.1.1 Softlight
First observe the project result, and then analyze the code.
1. Use cd command to enter 08.2.1_Softlight directory of Python code
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/08.1.1_Softlight
2. Use the python command to execute the Python code “Softlight.py”.
python Softlight.py
After the program is executed, shift the potentiometer, then the terminal window will print out the voltage
value of the potentiometer and the converted digital quantity. And brightness of LED will be changed

consequently.
The following is the code:
import RPi.GPIO as GPIO

import smbus

import time

address = 0x48
bus=smbus. SMBus (1)
cmd=0x40

ledPin = 11

def analogRead(chn) :
value = bus. read byte data(address, cmd+chn)

return value

def analoglWirite (value):

bus. write byte data(address, cmd, value)

def setup():
global p
GPI0. setmode (GPTO. BOARD)
GPIO. setup (1edPin, GPIO. OUT)
GPI0. output (ledPin, GPTO. LOW)

p = GPI0. PW(1edPin, 1000)

p. start (0)
def loop():
while True:
value = analogRead (0) #tread AO pin
p. ChangeDutyCycle (value*100/255) #Convert ADC value to duty cycle of PWM
voltage = value / 255.0 * 3.3 ftcalculate voltage

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

028 Chapter 8 Potentiometer & LED www.freenove.com [l

print ( ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep (0. 01)

def destroy():
bus. close()
GPI0. cleanup ()

if name == main :
print ( Program is starting ... )
setup ()
try:
Loop ()
except KeyboardInterrupt:
destroy ()

In the code, read ADC value of potentiometers and map it to duty cycle of PWM to control LED brightness.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 9 Potentiometer & RGBLED

Chapter 9 Potentiometer & RGBLED

In this chapter, we will use 3 potentiometers to control the brightness of 3 LEDs of RGBLED to make it show
different colors.

Project 9.1 Colorful Light

In this project, 3 potentiometers are used to control RGBLED and the principle is the same with the front soft
light. Namely, read the voltage value of the potentiometer and then convert it to PWM used to control LED
brightness. Difference is that the front one need only one LED, but this project needs a RGBLED (3 LEDs) .

Component List

Raspberry Pi 3B x1 Jumper

GPIO Expansion Board & Wire x1
—a. A4 44
BreadBoard x1

Rotary potentiometer x3 | PCF8591 x1 Resistor 10kQ x2 | Resistor 220Q x3 | RGBLED x1

:1)

|

e
™
T
o=
L
)
=

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

0[S Chapter 9 Potentiometer & RGBLED www.freenove.com [l

Circuit

Schematic diagram

3.3V

AINO  Vdd}—18

7 1 )
ml 2 {AINT  Aout|—1>- »
N _ j AIN2  Vref :g .
.>—\/\/\/\/——||| —223\13 AG&?_?L._“I %Rg lokf; - VY, o
“‘l 7 NSty T JQUE: SN by RXDO -0
8 s spal-2 L1GPI04 GPIO18 12—
o N\AH I PCrasoT 111GPIO17 GPI023 |16
131GP1027 GPI1024 18—
I 15 1GP1022 GPI025 |22
Ml 19 Imosi CEO0 24—
21IMIso CE1}26-
1\/\/\/\,:—| I 231scLK SCLO |28
ax & o -2L{SDAO GPIO12 {32
W -29.1GPI05 GPIO16}-36—
o K0 311GPI06 GPIO20}38—
B —ww 331GPI013 GPI021 40
. P R -321GPIO19
TIRELE SNV ~3L{GPI026 Raspberry Pi
GPIO Extension Shield
GND

L

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 9 Potentiometer & RGBLED

Hardware connection

W EEEEERRERERRRERRERREREERERERRRRRRERRRRRRERE]

Raspberry Pi GPIO Extension Shield

LN LI )
L 3 L )
LN L
e #GPI017 GPIO18e .
——— ] #GPI027 GNDe .o
#GPI022 GPI023e
o #3V3 GPI024e

#MOSI GNDe
#MISO GPIO25e
#5CK CEOe
#GND CEle
#SDA0 SCLOw
#GPIO5 GNDe
#GPIO6 GPIO12e
#GPIO13  GNDe
#GPIO19 GPIO16e
#GPI026 GPI020e

® & & 8 0 44 D ¢ 4 4SS 8000 e s

.
.
.
.
Ld
.
-
.
L]
L]
.
.
.
.
.
.
.
.
. GPIO21e 10
L J . L
LN ) L B L
LN LI .
4 LN LI
-mc- -ll LN}
L L]
s GEEEEEEED * ° " .-- . e
o commmm— s o N "o .o
G + e ¢ E e . e
. 8 . o o 0 o - L
oammm— .« + .
.« & & & @ .
L
L . & & & @ .
. ® & & & @ .
Ll « & & & @ . L]
.
e & & & @ . -
. .
L 3 . & & o 0 . -
LN 3 . & & 0 0 L3 L d
LN 3 . & o 0 0 . L
L
e & & 8 0 . L
) ..
L J e & & 8 0 . . o
. e e e & o 0 . L
LA g e e & o 0 L L I
= _______________ =}
e & & o 0 L I
. e L I L L I L
o o Il o ¢ emtm—o o
—“_}_‘
-——c.-mﬁﬁ.-_?‘g;
e ¢+ il ¢ ¢ cmtm— o
. e @ o o e e 0 o 0
LN . e o o 0 e e o 0 L )
LN . e ® o 0 L2 I I L
LN . e 0 00 L2 I I L
LN L I N L I L )
LR L I N L I I LN )
L I L I
L N L I

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

First observe the project result, and then analyze the code.
1. Use cd command to enter 09.1.1_ColorfulSoftlight directory of C code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/09.1.1_ColorfulSoftlight
2. Use following command to compile "ColorfulSoftlight.c" and generate executable file "ColorfulSoftlight".
gcc ColorfulSoftlight.c —o ColorfulSoftlight —IwiringPi —lpthread
3. Then run the generated file "ColorfulSoftlight".
sudo ./ColorfulSoftlight
After the program is executed, rotate one of potentiometers, then the color of RGBLED will change
consequently. And the terminal window will print out the ADC value of each potentiometer.

The following is the program code:

1 #tinclude <wiringPi.h>
#tinclude <pcf8591.h>
#include <stdio.h>

#include <softPwm. h>

>fine address 0x48 //pcf8591 default address
#idefine pinbase 64 //any number above 64

ftdefine AO pinbase + 0

© 0 N O O1 = W DN
iz!

ftdefine Al pinbase + 1

10 fidefine A2 pinbase + 2

11 ftdefine A3 pinbase + 3

12

13 #tdefine ledRedPin 3 //define 3 pins of RGBLED

14 #tdefine ledGreenPin 2

15 ftdefine ledBluePin 0

16 | int main(void) {

17 int val Red, val Green, val Blue;

18 if(wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
19 printf( )E

20 return 1;

21 1

22 softPwmCreate (1edRedPin, 0, 100) ; //create 3 PWM output pins for RGBLED
23 softPwmCreate (1edGreenPin, 0, 100) ;



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 9 Potentiometer & RGBLED

softPwmCreate (1edBluePin, 0, 100) ;
pcf8591Setup (pinbase, address) ; //initialize PCF8591

while (1) {
val Red = analogRead(A0); //read 3 potentiometers
val Green = analogRead (Al) ;
val Blue = analogRead(A2) ;
softPwmWrite (ledRedPin, val Red*100/255) ; //map the read value of
potentiometers into PWM value and output it
softPwmWrite (ledGreenPin, val Green*100/255) ;
softPwmWrite (l1edBluePin, val Blue*100/255) ;
//print out the read ADC value
printf ("ADC value val Red: %d ,\tval Green: %d ,\tval Blue: %d
\n”, val Red, val Green, val Blue);
delay (100) ;
}
return 0;
}
In the code, read the ADC value of 3 potentiometers and map it into PWM duty cycle to control the control
3 LEDs with different color of RGBLED, respectively.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 9 Potentiometer & RGBLED www.freenove.com [l

Python Code 9.1.1 ColorfulSoftlight
First observe the project result, and then analyze the code.
1. Use cd command to enter 09.1.1_ColorfulSoftlight directory of Python code.

2. Use python command to execute python code "ColorfulSoftlight.py".

After the program is executed, rotate one of potentiometers, then the color of RGBLED will change
consequently. And the terminal window will print out the ADC value of each potentiometer.
The following is the program code:

import RPi.GPIO as GPIO

import smbus

import time

address = 0x48
bus=smbus. SMBus (1)
cmd=0x40

ledRedPin = 15 #tdefine 3 pins of RGBLED
ledGreenPin = 13
ledBluePin = 11

def analogRead(chn) : #tread ADC value
bus. write byte (address, cmd+chn)
value = bus. read byte (address)

bus. read byte (address)

value

return value

def analoglWirite (value):

bus. write byte data(address, cmd, value)

def setup():
global p Red,p Green, p Blue
GPI0. setmode (GPTO. BOARD)
GPIO. setup (ledRedPin, GPI0. OUT) fiset 3 pins of RGBLED to output mode
GPIO. setup (ledGreenPin, GPI0. OUT)
GPIO. setup (ledBluePin, GPIO. OUT)

p_Red = GPIO. PWM(ledRedPin, 1000) #configure PWM to 3 pins of RGBLED
p_Red. start (0)

p_Green = GPIO. PWM(ledGreenPin, 1000)

p_Green. start (0)

p Blue = GPIO. PWM(ledBluePin, 1000)

p Blue. start (0)

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 9 Potentiometer & RGBLED

def loop():
while True:
value Red = analogRead(0) #iread ADC value of 3 potentiometers
value Green = analogRead (1)
value Blue = analogRead(2)
p_Red. ChangeDutyCycle (value Red*100/255) #map the read value of potentiometers
into PWM value and output it
p_Green. ChangeDutyCycle (value Green*100/255)
p_Blue. ChangeDutyCycle (value Blue¥100/255)
#iprint read ADC value
print ( ADC Value
value Red: %d , \tvlue Green: %d , \tvalue Blue: %d %(value Red, value Green, value Blue))

time. sleep(0.01)

def destroy():
bus. close()
GPI0. cleanup ()

if name == main :
print ' Program is starting ...
setup ()
try:
Loop ()
except KeyboardInterrupt:
destroy ()
In the code, read the ADC value of 3 potentiometers and map it into PWM duty cycle to control the control
3 LEDs with different color of RGBLED, respectively.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

112

Chapter 10 Photoresistor & LED www.freenove.com [l

Chapter 10 Photoresistor & LED

In this chapter, we will learn how to use photoresistor.

Project 10.1 NightLamp

Photoresistor is very sensitive to illumination strength. So we can use this feature to make a nightlamp, when
ambient light gets darker, LED will become brighter automatically, and when the ambient light gets brighter,
LED will become darker automatically.

Component List

Raspberry Pi 3B x1 Jumper
GPIO Extension Board & Wire x1
BreadBoard x1

Photoresistor x1 PCF8591 x1 Resistor 10kQ x3 | Resistor 220Q x1 | LED x1

—a. A4 44

o
™
i
o=
L
-0
=

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 10 Photoresistor & LED

Component knowledge

Photoresistor

Photoresistor is a light sensitive resistor. When the strength that light casts onto the photoresistor surface is
not the same, resistance of photoresistor will change. With this feature, we can use photoresistor to detect
light intensity. Photoresistor and symbol are as follows.

1T 2

The circuit below is often used to detect the change of photoresistor resistance:

In the above circuit, when photoresistor resistance changes due to light intensity, voltage between
photoresistor and resistor R1 will change, so light's intensity can be obtained by measuring the voltage.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

114

Chapter 10 Photoresistor & LED

www.freenove.com [l

Circuit

The circuit of this project is similar to the one in last chapter. The only difference is that the input signal of the
AINO pin of PCF8591 is changed from a potentiometer to combination of a photoresistor and a resistor.

Schematic diagram

3.3V
A
” é é _1— |
10kQ R2
ngQ 10kQ 5 3.3V 5V
1UIaINO  vdd 16— 198 o SDA1 TXDO }=8—
~2dAINT  Aoutf—12- S1scL1 RXDO O
~3 AN vrefl14 —L1GPI0O4 GPIO18}-12—
—{amz aND—2 ]| 111GPI017  GPIO23}16-
5 10 ExT |12 13 1GPI027 GPI024 |18
6 Ia1 oscldl A51GP1022 GP1025}22—
7 1a2 scLj—10 19 {mosi CEO |24
8 lvss  spal-2 21Imiso CE1126
PCresol SZ 2314sCLK SCLO28.
1 5 271SDA0 GPIO12132-
—— | 224GPIO5 GPIO16}-35—
- S11GPIO6 GPIO20 |38
33 1GPIO13 GPIO21 140
%Gmow
. GP1026 Raspberry Pi
7 GPIO Extension Shield
- GND
2200
Hardware connection

Raspberry Pi GPIO Extension Shield

RR R R R R R R R R R R R E R R RN ERERRRRRRRRR]

bt et et et et

® o o @ED e e s s
* S o O GED s e e
@
.

GPIO21e 20

—— v+ ¢+ e el e
[ 1 ¢ I

® % 5 GED s e s s e s e s e s .

.
TbS942d
° . ..

® ® 8 0 e e e e e e e
o e & e e 8 0w e e

IZIZZéI

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 10 Photoresistor & LED

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 10 Photoresistor & LED www.freenove.com |l

Code

The code of this project is identical with the one in last chapter logically.
C Code 10.1.1 Nightlamp

First observe the project result, and then analyze the code.

1. Use cd command to enter 010.1.1_Nightlamp directory of C code.

2. Use following command to compile “Nightlamp.c” and generate executable file “Nightlamp”.

3. Then run the generated file “Nightlamp”.

After the program is executed, when you cover the photosensitive resistance or make a flashlight toward the
photoresistor, the brightness of LED will be enhanced or weakened. And the terminal window will print out
the current input voltage value of PCF8591 AINO pin and the converted digital quantity.

The following is the program code:

#tinclude <wiringPi.h>
ftinclude <pcf8591. h>
#include <stdio.h>

#include <softPwm.h>

ttdefine address 0x48 //pcf8591 default address
ttdefine pinbase 64 //any number above 64
ftdefine AO pinbase + 0

#tdefine Al pinbase + 1

ftdefine A2 pinbase + 2

ftdefine A3 pinbase + 3

#define ledPin 0
int main(void) {
int value;
float voltage;
if(wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
printf (“"setup wiringPi failed !7);
return 1;
}
softPwmCreate (1edPin, 0, 100) ;
pcf8591Setup (pinbase, address) ;

while (1) {
value = analogRead (A0); //read AO pin
softPwmWrite (1edPin, value*x100/255) :
voltage = (float)value / 255.0 * 3.3; // calculate voltage
printf ("ADC value : %d , \tVoltage : % 2(V\n”, value, voltage) ;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 10 Photoresistor & LED

delay (100) ;
}
return 0;
}
Python Code 10.1.1 Nightlamp
First observe the project result, and then analyze the code.
1. Use cd command to enter 09.1.1_Nightlamp directory of Python code.

2. Use the python command to execute the Python code “Nightlamp.py”.
~pythonNightlemppy
After the program is executed, when you cover the photosensitive resistance or make a flashlight toward the
photoresistor, the brightness of LED will be enhanced or weakened. And the terminal window will print out
the current input voltage value of PCF8591 AINO pin and the converted digital quantity.
The following is the program code:

import RPi.GPIO as GPIO

import smbus

import time

address = 0x48
bus=smbus. SMBus (1)
cmd=0x40

ledPin = 11

def analogRead(chn) :
value = bus. read byte data(address, cmd+chn)

return value

def analoglWirite (value):

bus. write byte data(address, cmd, value)

def setup():
global p
GPI0. setmode (GPT0. BOARD)
GPIO. setup (1edPin, GPIO. OUT)
GPIO0. output (1edPin, GPTO. LOW)

p = GPI0. PW(1edPin, 1000)
p. start (0)

def loop():
while True:
value = analogRead (0)
p. ChangeDutyCycle (value*100/255)
voltage = value / 255.0 * 3.3

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Nl Chapter 10 Photoresistor & LED www.freenove.com [l

print ( ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep (0. 01)

def destroy():
bus. close()
GPI0. cleanup ()

if name == main :
print ( Program is starting ... )
setup ()
try:
Loop ()
except KeyboardInterrupt:
destroy ()

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 11 Thermistor [N}

Chapter 11 Thermistor

In this chapter, we will learn another new kind of resistor, thermistor.

Project 11.1 Thermometer

The resistance of thermistor will be changed with temperature change. So we can make a thermometer
according to this feature.

Component List

Raspberry Pi 3B x1 Jumper
GPIO Extension Board & Wire x1
BreadBoard x1

Thermistor x1 PCF8591 x1 Resistor 10kQ x3

—a. A4 44

e
M
-
o=
(0p]
)
=

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

iVl Chapter 11 Thermistor www.freenove.com [l

Component knowledge

Thermistor
Thermistor is a temperature sensitive resistor. When the temperature changes, resistance of thermistor will
change. With this feature, we can use thermistor to detect temperature intensity. Thermistor and symbol are
as follows.

The relationship between resistance value and temperature of thermistor is:
Rt=R*EXP [B*(1/T2-1/T1)]

Where:

Rt is the thermistor resistance under T2 temperature;

R is in the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of E;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15+celsius temperature.
Parameters of the thermistor we use is: B=3950, R=10k, T1=25.
The circuit connection method of the thermistor is similar to photoresistor, like the following method:

5V

R2
10kQ

WW

R1

We can use the value measured by the analog pin of UNO to obtain resistance value of thermistor, and then
can use the formula to obtain the temperature value.
Consequently, the temperature formula can be concluded:

T2 = 1/(1/T1 + In(Rt/R)/B)

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www .freenove.com

Chapter 11 Thermistor

Circuit

The circuit of this project is similar to the one in last chapter. The only difference is that the photoresistor is

replaced by the thermistor.

Schematic diagram

3.3V
A
10kQ R3 R2
10kQ) 10kQ 3.3V 5V

1 1aINO  vdd]—16 ‘ 3 ISDA1 TXDO }=8—
~24AINT  Aout)1 5 1scL1 RXDO 1O
~3AIN2  vref|—14 —L1GPIO4 GPIO18}-12—
~AJAIN3 AGND|13 A1L1IGPIO17 GPI023}-16
st eatzle]) 131GPI027  GPIO24 118
6 a1 oscl-ll- 15 1GP1022 GPI025}-22
7 |a2 scL |10 19 Imos| CEQ |24~
8 lvss  spal-2 211IMmIso CE1 )26
R PCF850] 231sSCLK SCLO}28~
L -2L1SDAD GPIO12}32—
29 1GPI05 GPIO16}-36—
S11GPIos GPI1020}-38
33 1GPIO13 GPI1021 140

% GPIO19

GP1026 Raspberry Pi
5?(: GPIO Extension Shield
GND

Hardware connection

Raspberry Pi GPIO Extension Shield

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

i28 Chapter 11 Thermistor www.freenove.com [l

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

In this project code, the ADC value is still needed to be read, and the difference is that a specific formula is
used to calculate the temperature value.

First observe the project result, and then analyze the code.
Use cd command to enter 11.1.1_Thermometer directory of C code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/11.1.1_Thermometer
1. Use following command to compile “Thermometer.c” and generate executable file “Thermometer”. “-Im”
option is needed.
gcc Thermometer.c —o Thermometer —lwiringPi —Im
2. Then run the generated file “Thermometer”.
sudo ./Thermometer
After the program is executed, the terminal window will print out the current ADC value, voltage value and
temperature value. Try to pinch the thermistor (do not touch pin) with hand lasting for a while, then the
temperature value will be increased.

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

e el el el el el e el el e el e

Temper:

The following is the code:

1 #tinclude <wiringPi.h>

2 #tinclude <pcf8591.h>

3 #include <stdio.h

4 #include <math. h>

5

6 #tdefine address 0x48 //pcf8591 default address
7 ttdefine pinbase 64 //any number above 64
8 ftdefine AO pinbase + 0

9 ftdefine Al pinbase + 1

10 ftdefine A2 pinbase + 2

11 fidefine A3 pinbase + 3

12

13 | int main(void) {



http://www.freenove.com/
mailto:support@freenove.com

14 int adcValue;

15 float tempK, tempC;

16 float voltage, Rt;

17 if(wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
18 printf ( )

19 return 1;

20 }

21 pcf8591Setup (pinbase, address) ;

22 while (1) {

23 adcValue = analogRead(A0); //read AO pin

24 voltage = (float)adcValue / 255.0 * 3.3; // calculate voltage

25 Rt = 10 * voltage / (3.3 - voltage); //calculate resistance value of thermistor
26 tempK = 1/(1/(273.15 + 25) + log(Rt/10)/3950.0); //calculate temperature (Kelvin)
27 tempC = tempK —273.15; //calculate temperature (Celsius)

28 printf(

29 ,adcValue, voltage, tempC) ;

30 delay (100) ;

31 }

32 return 0;

33 | !

In the code, read the ADC value of PCF8591 AO port, and then calculate the voltage and the resistance of
thermistor according to Ohms law. Finally, calculate the current temperature. according to the front formula.

First observe the project result, and then analyze the code.
1. Use cd command to enter 11.1.1_Thermometer directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/11.1.1_Thermometer
2. Use python command to execute python code “Thermometer.py”.

python Thermometer.py
After the program is executed, the terminal window will print out the current ADC value, voltage value and
temperature value. Try to pinch the thermistor (do not touch pin) with hand lasting for a while, then the
temperature value will be increased.

at
=rature

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

The following is the code:


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 11 Thermistor [k

import RPi.GPIO as GPIO
import smbus
import time

import math

address = 0x48
bus=smbus. SMBus (1)
cmd=0x40

def analogRead(chn) :
value = bus. read byte data(address, cmd+chn)

return value

def analogWrite(value):

bus. write byte data(address, cmd, value)

def setup():
GPI0. setmode (GPT0. BOARD)

def loop():
while True:
value = analogRead (0) #iread A0 pin
voltage = value / 255.0 * 3.3 ficalculate voltage

Rt = 10 * voltage / (3.3 — voltage) #calculate resistance value of thermistor
1/(1/(273.15 + 25) + math. log(Rt/10)/3950.0) #calculate temperature

tempK

(Kelvin)
tempC
print C ADC Value : %d, Voltage : % 2f, Temperature : % 2f %(value, voltage, tempC))
time. sleep(0.01)

tempK —273. 15 ttcalculate temperature (Celsius)

def destroy():
GPI0. cleanup ()

if name == main :
print ( Program is starting ... ')
setup()
try:
Loop ()
except KeyboardInterrupt:
destroy ()
In the code, read the ADC value of PCF8591 AO port, and then calculate the voltage and the resistance of
thermistor according to Ohms law. Finally, calculate the current temperature. according to the front formula.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Il Chapter 12 Joystick

www.freenove.com .

Chapter 12 Joystick

In the previous chapter, we have learned how to use rotary potentiometer. Now, let's learn a new electronic

module Joystick which working on the same principle as rotary potentiometer.

Project 12.1 Joystick

In this project, we will read the output data of Joystick and print it to the screen.

Component List

Raspberry Pi 3B x1
GPIO Expansion Board & Wire x1
BreadBoard x1

Jumper

—a. A4 44

PCF8591 x1

e
™
T
o=
L
)
=

Resistor 10kQ x2

Joystick x1

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 12 Joystick

Component knowledge

Joystick
Joystick is a kind of sensor used with your fingers, which is widely used in gamepad and remote controller. It
can shift in direction Y or direction X at the same time. And it can also be pressed in direction Z.

GND
+5V
VRX
VRY
SW

Joystick

o [ oo |

Two rotary potentiometers inside the joystick are set to detect the shift direction of finger, and a push
button in vertical direction is set to detect the action of pressing.

5V VS

«(GND)

When read the data of joystick, there are some different between axis: data of X and Y axis is analog, which
need to use ADC. Data of Z axis is digital, so you can directly use the GPIO to read, or you can also use ADC

to read.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

il Chapter 12 Joystick www.freenove.com [l

Circuit

Schematic diagram

3.3V

R2
ngQ é 10kQ 3.3v 5v
1 3
SDA1 TXDO -8~
_ S1scL1 RXDO O
== —L1GPIO4 GPI018}-12— . Griog
N AL1GPIO17 GPI023}-16
GND | *--I“ ~131GP1027 GP1024 |18
vec |2 151GPI022 GPIO25 }-22—
vRX |3 1IAINO  vdd}—18 19 ImosI CEO|ides
VRY 4_><IA1N1 Aoutp—15- 2LIMISO CE1}26-
SW |2 apio1g —j AIN2  Vref E _27_-23- gglﬁ.\g GPS|8|1'2 jz_-Zﬁ—
- ———AIN3 AGND
Joystick 5 {a0 exl12 [ 29 1GPIO5 GPIO16}35
6 Ia1 oscl S11GPIos GPI020 38
Z1a2  scu)1o -331GPI013 GPI021 40
8 lvss _spab-2 -321GPI019
~31GPI026 Raspberry Pi
GPIO Extension Shield
GND

= 1

Hardware connection

GNDe
GPI024e
GNDe

026 GPI020e

#GPI017 GPIO18e
#GND

#GP1027
#GPI022 GPIO23e

Raspberry Pi GPIO Extension Shield

EREERRRRERERRRERERRERRRRERRRRERERERERRRL

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

In this project code, we will read ADC value of X and Y axis of Joystick, and read digital quality of Z axis, then
print these data out.

First observe the project result, and then analyze the code.
1. Use cd command to enter 12.1.1_Joystick directory of C code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/12.1.1_ Joystick
2. Use following command to compile "Joystick.c" and generate executable file "Joystick.c”. "-Im" option is
needed.
gcc Joystick.c —o Joystick —lwiringPi —Im
3. Then run the generated file "Joystick".
sudo ./Joystick
After Program is executed, the terminal window will print out the data of 3 axes X, Y, Z. And shifting the
Joystick or pressing it will make those data change.

1
1
1
1
1
1
1
1

1

The flowing is the code:

1 #tinclude <wiringPi.h>

2 #tinclude <pcf8591. h>

3 #include <stdio.h>

4 #include <softPwm.h>

5

6 #tdefine address 0x48 //pcf8591 default address
7 ttdefine pinbase 64 //any number above 64

8 ftdefine AO pinbase + 0

9 ftdefine Al pinbase + 1

10 ftdefine A2 pinbase + 2

11 ftdefine A3 pinbase + 3

12

13 #tdefine Z Pin 1 //define pin for axis Z

14

15 | int main(void) {

16 int val X,val Y,val Z;

17 if(wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen



http://www.freenove.com/
mailto:support@freenove.com

Chapter 12 Joystick www.freenove.com [l

printf ("setup wiringPi failed !7);

return 1;
}
pinMode (Z Pin, INPUT) ; //set Z Pin as input pin and pull-up mode
pullUpDnControl (Z Pin, PUD UP) ;
pcf8591Setup (pinbase, address) ; //initialize PCF8591
while (1) {
val 7 = digitalRead (Z Pin); //read digital quality of axis Z

analogRead (AQ) ; //read analog quality of axis X and Y

val Y
val X = analogRead(Al) ;
printf ("val X: %d ,\tval Y: %d ,\tval Z: % \n”,val X,val Y,val 7Z);
delay (100) ;

}

return 0;

}
In the code, configure Z_Pin to pull-up input mode. In while cycle of main function, use analogRead () to
read the value of axis X and Y and use digitalRead () to read the value of axis Z, then print them out.

while (1) {
val 7 = digitalRead(Z Pin); //read digital quality of axis Z
val Y = analogRead (AO) ; //read analog quality of axis X and Y
val X = analogRead(Al) ;
printf ("val X: %d ,\tval Y: %d ,\tval Z: % \n”,val X,val Y,val 7Z);
delay (100) ;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

First observe the project result, and then analyze the code.
1. Use cd command to enter 12.1.1_Joystick directory of Python code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/12.1.1_ Joystick
2. Use python command to execute python code "Joystick.py".
python Joystick.py
After Program is executed, the terminal window will print out the data of 3 axes X, Y, Z. And shifting the
Joystick or pressing it will make those data change.

The following is the program code:

1 import RPi.GPIO as GPIO

2 import smbus

3 import time

4

5 address = 0x48

6 bus=smbus. SMBus (1)

7 cmd=0x40

8 7Z Pin = 12 #tdefine pin for Z Pin

9 def analogRead(chn) : #tread ADC value

10 bus. write byte (address, cmd+chn)

11 value = bus. read_byte (address)

12 value = bus. read byte (address)

13 #tvalue = bus. read_byte data(address, cmd+chn)

14 return value

15

16 def analogWrite (value):

17 bus.write byte data(address, cmd, value)

18

19 def setup():

20 global p Red,p Green, p Blue

21 GPI0. setmode (GPI0. BOARD)

22 GPIO. setup(Z Pin, GPIO. IN, GPIO. PUD UP)  #set Z Pin to pull-up mode
23 def loop():

24 while True:

25 val Z = GPIO. input(Z Pin) firead digital quality of axis Z
26 val Y = analogRead (0) #read analog quality of axis X and Y
27 val X = analogRead(1)



http://www.freenove.com/
mailto:support@freenove.com

iYAl Chapter 12 Joystick www.freenove.com [l

print Cvalue X: %d , \tvlue Y: %d ,\tvalue Z: %d %(val X, val Y, val 7))
time. sleep (0. 01)

def destroy():
bus. close()
GPI0. cleanup ()

if name == main :
print ( Program is starting ... )
setup ()
try:
Loop ()

except KeyboardInterrupt:
destroy ()

In the code, configure Z_Pin to pull-up input mode. In while cycle of loop, use analogRead () to read the
value of axis X and Y and use GPIO.input () to read the value of axis Z, then print them out.

while True:
val 7 = GPIO. input (Z Pin) #iread digital quality of axis Z
val Y = analogRead (1) firead analog quality of axis X and Y

val X = analogRead(2)
print C value X: %d , \tvlue YV: %d ,\tvalue Z: %d %(val X, val Y, val 7))
time. sleep(0.01)

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

. www.freenove.com

Chapter 13 Motor & Driver EMEE]

Chapter 13 Motor & Driver

In this chapter, we will learn some knowledge about DC motor and DC motor drive, and how to control the

speed and direction of motor.

Project 13.1 Control Motor with Potentiometer

In this project, a potentiometer is used to control motor. When the potentiometer is in the midpoint position,

the motor will stops rotating, and when away from the middle position, the motor speed increases. When

potentiometer is shifted to limited ends, the motor speed reaches maximum. When the potentiometer
position is at different side of middle position, the direction of motor is different.

Component List

Raspberry Pi 3B x1
GPIO Extension Board & Wire x1
BreadBoard x1

Jumper

—a. R A 4 44

Breadboard power module x1

SV OFF 3.3V
mER §EE QOO0

+ -

9V Battery (provided by yourself) & battery cable

Rotary potentiometer x1 Motor x1

L

Resistor 10kQ x2

PCF8591 x1 L293D

Tk5942d
dELZT

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

134

Chapter 13 Motor & Driver www.freenove.com [l

Component knowledge

Motor

Motor is a device that converts electrical energy into mechanical energy. Motor consists of two parts: stator
and rotor. When motor works, the stationary part is stator, and the rotating part is rotor. Stator is usually the
outer case of motor, and it has terminals to connect to the power. Rotor is usually the shaft of motor, and can
drive other mechanical devices to run. Diagram below is a small DC motor with two pins.

Q

a

1 2
When motor get connected to the power supply, it will rotate in one direction. Reverse the polarity of power
supply, then motor rotates in opposite direction.

N YA
— ———
+ - -+

L293D
L293D is a chip integrated with 4-channel motor drive. You can drive a unidirectional motor with 4 ports or a
bi-directional motor with 2 port or a stepper motor.

1 16 U Enable 1 +v He
2 15 21 1n1 In4 P2
3 14 31 out 1 out 4 P4
4 13 4l ov ov B3
5 12 21 ov ov P2
6 11 L1 out2 out 3 L
7 10 AR In3 PO
8 9 L +Vmotor Enable 2 9
293D

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 13 Motor & Driver

Port description of L293D module is as follows:

Pin name Pin number Description

In x 2,7,10, 15 Channel x digital signal input pin

Out x 3,6,11, 14 Channel x output pin, input high or low level according to In x pin, get
connected to +Vmotor or OV

Enablel 1 Channel 1 and channel 2 enable pin, high level enable

Enable2 9 Channel 3 and channel 4 enable pin, high level enable

oV 4,5,12,13 Power cathode (GND)

+V 16 Positive electrode (VCC) of power supply, supply voltage 4.5~36V

+Vmotor 8 Positive electrode of load power supply, provide power supply for the Out

pin x, the supply voltage is +V~36V

For more details, please see datasheet.

When using L293D to drive DC motor, there are usually two kinds of connection.

Following connection uses one channel, and it can control motor speed through PWM, but the motor can
only rotate in one direction.

L293D Pin Out

Motor CM)

Following connection uses two channels: one channel outputs PWM wave, and another channel connects
GND, so you can control the speed of motor. When these two channel signals are exchanged, the current
direction of the motor can be reversed, and the motor will rotate in reverse direction. This can not only
control the speed of motor, but also can control the steering of motor.

gy OND

Motor Club ’ Motor

GND  |L293D Pin Out 2 — [L293D Pin Out 2

In actual use, motor is usually connected to the channel 1 and 2, output different level to in1 and in2 to
control the rotation direction of the motor, and output PWM wave to Enablel port to control the motor
rotation speed. Or, get motor connected to the channel 3 and 4, output different level to in3 and in4 to
control the motor's rotation direction, and output PWM wave to Enable2 pin to control the motor rotation
speed.

support@freenove.com [l

135



http://www.freenove.com/
mailto:support@freenove.com

iRl Chapter 13 Motor & Driver www.freenove.com [l

Circuit

When connecting the circuit, pay attention to that because the motor is a high-power component, do not

use the power provided by the RPi, which may do damage to your RPi. the logic circuit can be powered by

RPi power or external power supply which should have the common ground with RPi.
Schematic diagram

5V 3.3V

L |

5V — l 3.3v

- 3.3V

GND T T GND

i2 | | |
BreadBoardPower 1050
gﬁ'}m 3.3V 6V
—tvss " Spaf— | 31SDA1 TXDO [-E-
»—||| A2 ScL 51SCL1 RXDO {19
A1 0SCl— —L1GPIO4 GPIO18 {12~
—{A0 ECTE—III 11GPIO17 GPI023 {16
' —AIN3AGND|—- 12-|GPIO27 GPI024 18
At voa = | s || [vost . T ceofa
O R e o 214MISO CE1{28.
- ' ° 231SCLK SCLO 28—
N ~2L{SDAO GPIO12}-32—
g1 3 291GPI05 GPIO16|-36—
L2930 ‘ -311GPI06 GPIO20 {38
5| Enable2  +Vmotor [ -331GPIO13 GPI021 40
=g In3 In2 -32.1GPI019
2% outs out2 |4 1 371GPIO26 Raspberry Pi
i v Is] GPIO Extension Shield
iz i ov 1711\ GND
74| Out4 Out1f3
95| In4 In113
16| TV Enable 17

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 13 Motor & Driver [Eg

Hardware connection

Raspberry Pi GPIO Extension Shield

I N —
L I Y

ses s e s e
L
s s e e

Change the jumper cap
position to change supply
voltage for motor.

D N I A I A O O A
R I A A B O O I
" e e v e e e e e e
LI A I I I A )
s e e s e s e e e e
DR I I I A
LI I I I A I I A A
L I I A ]

w
i
E0E NEE o =
= w
5] <

E .

Logic voltage supply
end (must select
3.3V)

AEE 440 AS AEE 440 AS

O =

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

In this project code, first read the ADC value, and then control the rotation direction and speed of the motor
according to the value of the ADC.

First observe the project result, and then analyze the code.
1. Use cd command to enter 13.1.1_Motor directory of C code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/13.1.1_Motor
2. Use following command to compile “Motor.c” and generate executable file “Motor”. “~-Im” and “-Ipthread”
option is needed.
gcc Motor.c —o Motor-IwiringPi —Im -Ipthread
3. Then tun the generated file "Motor”.
sudo ./Motor
After the program is executed, shift the potentiometer, then the rotation speed and direction of the motor
will change with it. And when the potentiometer is turned to midpoint position, the motor stops running.
When away from the middle position, the motor speed will increase. When to both ends, motor speed reach
to maximum. When the potentiometer is turned to different side of the middle position, the motor will run
with different direction. Meanwhile, the terminal will print out ADC value of the potentiometer, the motor

direction and the PWM duty cycle used to control motor speed.

The following is the code:

1 #tinclude <wiringPi.h>
#tinclude <pcf8591. h>
#include <stdio.h>
#include <softPwm.h>
#include <math. h>

#tinclude <stdlib. h>

#tdefine address 0x48 //pcf8591 default address

ttdefine pinbase 64 //any number above 64

© 0 N O O1 &= W D



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 13 Motor & Driver [EeE]

fidefine AO pinbase + 0
ftdefine Al pinbase + 1
ftdefine A2 pinbase + 2
f#idefine A3 pinbase + 3

#define motoRPinl 2 // define the pin connected to L293D
#define motoRPinZ 0
#define enablePin 3
// Map function: map the value from a range of mapping to another range.
long map (long value, long fromLow, long fromHigh, long toLow, long toHigh) {
return (toHigh—toLow)*(value—fromLow) / (fromHigh—fromLow) + toLow;
}
//motor function: determine the direction and speed of the motor according to the ADC
value to be input
void motor (int ADC) {
int value = ADC —128;
if (value>0) {
digitalWrite (motoRPinl, HIGH) ;
digitalWrite (motoRPin2, LOW) ;
printf ("turn Forward...\n”);
}
else if (value<0) {
digitalWrite (motoRPinl, LOW) ;
digitalWrite (motoRPin2, HIGH) ;
printf ("turn Back...\n”);
}
else {
digitalWrite (motoRPinl, LOW) ;
digitalWrite (motoRPin2, LOW) ;
printf ("Motor Stop...\n”);
}
softPwmWrite (enablePin, map (abs (value), 0, 128, 0, 255)) ;
printf ("The PWVM duty cycle is %d%%\n”, abs (value)*100/127) ://print the PWM duty cycle

int main(void) {

int value;

if(wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
printf ("setup wiringPi failed !7);
return 1;

}

pinMode (enablePin, OUTPUT) ;// set mode for the pin

pinMode (motoRPin1, OUTPUT) ;

pinMode (motoRPin2, OUTPUT) ;

softPwmCreate (enablePin, 0, 100) ;// define PWM pin

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

140

Chapter 13 Motor & Driver www.freenove.com [l

pcf8591Setup (pinbase, address) ;//initialize PCF8591

while (1) {
value = analogRead(A0); //read A0 pin
printf ("ADC value : %d \n”, value);
motor (value) ; // start the motor
delay (100) ;
}
return 0;
}
We have been familiar with reading ADC value. So, let’s learn directly subfunction void motor(int ADC): first,
compare ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,
motoRPinl outputs high level and motoRPin2 outputs low level to control motor to run with forward rotation
direction. When the current ADC value is lower, motoRPinl outputs low level and motoRPin2 outputs high
level to control motor run with reversed direction. When the ADC value is equal to 128, motoRPinl and
motoRPin2 output low level, then the motor stops. And then determine PWM duty cycle according to the
difference between ADC value and 128. Because the absolute difference value stays within 0-128. We need
to use the map() subfunction mapping the difference value to range of 0-255. Finally print out the duty cycle.
void motor (int ADC) {
int value = ADC -128;
if (value>0) {
digitalWrite (motoRPinl, HIGH) ;
digitalWrite (motoRPin2, LOW) ;

printf ("turn Forward...\n”);

}
else if (value<0) {
digitalWrite (motoRPinl, LOW) ;
digitalWrite (motoRPin2, HIGH) ;
printf ("turn Backward...\n”);
}
else {
digitalWrite (motoRPinl, LOW) ;
digitalWrite (motoRPin2, LOW) ;
printf ("Motor Stop...\n");
}
softPwmWrite (enablePin, map (abs (value), 0, 128, 0, 255)) ;
printf ("The PWVM duty cycle is %d%%\n”, abs (value)*100/127);// print out PWM duty
cycle.

}

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

First observe the project result, and then analyze the code.

1.

will change with it. And when the potentiometer is turned to midpoint position, the motor stops running.
When away from the middle position, the motor speed will increase. When to both ends, motor speed reach
to maximum. When the potentiometer is turned to different side of the middle position, the motor will run
with different direction. Meanwhile, the terminal will print out ADC value of the potentiometer, the motor
direction and the PWM duty cycle used to control motor speed.

Use cd command to enter 13.1.1_Motor directory of Python code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/13.1.1_Motor
2. Use python command to execute python code “Motor.py”.

python Motor.py
After the program is executed, shift the potentiometer, then the rotation speed and direction of the motor

Turn Forward. ..

Turn F
The PWM

The following is the code:

1

© 0 N O O1 = W D

—_ =
= O

e e T e e T e
© 0 N O U1 = W

import RPi.GPIO as GPIO
import smbus

import time

address = 0x48

bus=smbus. SMBus (1)

cmd=0x40

# define the pin connected to L293D
motoRPinl = 13

motoRPin2 = 11

15

enablePin

def analogRead(chn) :
value = bus. read byte data(address, cmd+chn)

return value

def analogWrite(value):

bus.write byte data(address, cmd, value)



http://www.freenove.com/
mailto:support@freenove.com

/vl Chapter 13 Motor & Driver www.freenove.com [l

def setup():
global p
GPT0. setmode (GPT0. BOARD) # set mode for pin
GPI0. setup (motoRPinl, GPTO. OUT)
GPI0. setup (motoRPin2, GPT0. OUT)
GPIO. setup (enablePin, GP10. OUT)

p = GPIO. PWM(enablePin, 1000)# creat PWM
p. start (0)

#mapNUM function: map the value from a range of mapping to another range

def mapNUM(value, fromLow, fromHigh, toLow, toHigh) :
return (toHigh—toLow)*(value—fromLow) / (fromHigh—fromLow) + toLow
#tmotor function: determine the direction and speed of the motor according to the ADC
value to be input.
def motor (ADC) :
value = ADC —128
if (value > 0):
GPI0. output (motoRPinl, GPI0. HIGH)
GPI0. output (motoRPin2, GPT0. LOW)
print ( Turn Forward...’)
elif (value < 0):
GPI0. output (motoRPin1, GPT0. LOW)
GPI0. output (motoRPin2, GPI0. HIGH)
print ( Turn Backward...’)
else :
GPI0. output (motoRPin1, GPTO. LOW)
GPI0. output (motoRPin2, GPT0. LOW)
print ( Motor Stop...")
p. start (mapNUM(abs (value), 0, 128, 0, 100))
print (" The PWM duty cycle is %d%%\n" %(abs(value)*100/127))  #print PMW duty cycle

def loop():
while True:
value = analogRead (0)
print ( ADC Value : %d %(value))
motor (value)
time. sleep (0. 01)

def destroyQ:
bus. close ()
GPIO. cleanup()

. , . ,
if name == main :

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 13 Motor & Driver

print (' Program is starting ... )
setup ()
try:
Loop ()
except KeyboardInterrupt:

destroy ()

We have been familiar with reading ADC value. So, let’s learn directly subfunction def motor (ADC): first,
compare ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,
motoRPin1 outputs high level and motoRPin2 output low level to control motor to run with forward rotation
direction. When the current ADC value is lower, motoRPin1 outputs low level and motoRPin2 outputs high
level to control run with reversed direction. When the ADC value is equal to 128, make motoRPinl and
motoRPin2 output low level, then the motor stops. And then determine PWM duty cycle according to the
difference between ADC value and 128. Because the absolute difference value stays within 0-128. We need
to use the map () subfunction mapping the difference value to range of 0-255. Finally print out the duty cycle.
def motor (ADC) :
value = ADC —128
if (value > 0):
GPI0. output (motoRPin1, GPI0. HIGH)
GPI0. output (motoRPin2, GP10. LOW)
print ( Turn Forward... )
elif (value < 0):
GPI0. output (motoRPinl, GPI0. LOW)
GPIO0. output (motoRPin2, GPI0. HIGH)
print ( Turn Backward...’)

else :
GPI0. output (motoRPinl, GPI0. LOW)
GPI0. output (motoRPin2, GP10. LOW)
print ( Motor Stop... )
p. start (mapNUM (abs (value), 0, 128, 0, 100))
print (" The PWM duty cycle is %d%%\n" %(abs(value)*100/127))  #print PMW duty cycle

support@freenove.com [l

143



http://www.freenove.com/
mailto:support@freenove.com

V8 Chapter 14 Relay & Motor

www.freenove.com Il

Chapter 14 Relay & Motor

In this chapter, we will learn a kind of special switch module, Relay Module.

Project 14.1.1 Relay & Motor

In this project, we will use a push button to control a relay and drive the motor.

Component List

Raspberry Pi 3B x1
GPIO Expansion Board & Wire x1
BreadBoard x1

Jumper

9V battery (prepared by yourself) & battery line

Breadboard extension x1

SV OFF 3.3V 5V OFF 3.3V
0000

+ +-

Resistor 10kQ x2

Resistor 1kQ x1

Resistor 220Q x1

NPN Relay x1 Motor x1
transistor x1 1

Push button x1

LED x1

Diode x1

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 14 Relay & Motor [ES

Component knowledge

Relay

Relay is a safe switch which can use low power circuit to control high power circuit. It consists of electromagnet
and contacts. The electromagnet is controlled by low power circuit and contacts is used in high power circuit.
When the electromagnet is energized, it will attract contacts.

The following is a principle diagram of common relay and the feature and circuit symbol of 5V relay used in
this project:

Diagram Feature: Symbol
/Armature Contactor
Spring — /
NG 24
= 3 1
B &% ° J
= DC 5V [ \_{'— 5
3A 120VAC
L £ l 3A 24VDC = 6
Electromagnet T 4 il 3
Signal power 1 3 5
Load power
o

Pin 5 and pin 6 are connected to each other inside. When the coil pin3 and 4 get connected to 5V power
supply, pin 1 will be disconnected to pin 5&6 and pin 2 will be connected to pin 5&6. So pin 1 is called close
end, pin 2 is called open end.

Inductor

The unit of inductance(L) is the henry (H). 1H=1000mH, 1mH=1000uH.

Inductor is an energy storage device that converts electrical energy into magnetic energy. Generally, it consists
of winding coil, with a certain amount of inductance. Inductor will hinder the changing current passing through
the inductor. When the current passing through inductor increases, it will attempt to hinder the increasing
trend of current; and when the current passing through the inductor decreases, it will attempt to hinder the
decreasing trend of current. So the current passing through inductor is not transient.

<2 L~V 2

The reference circuit for relay is as follows. The coil of relay can be equivalent to inductor, when the transistor
disconnects power supply of the relay, the current in the coil of the relay can't stop immediately, causing an
impact on power supply. So a parallel diode will get connected to both ends of relay coil pin in reversing
direction, then the current will pass through diode, avoiding the impact on power supply.

5V

:; LED1
3 1
NN ER
?2100 ZS \‘[
D1 6
4 T 12

R2 Rela:
1kQ Y
Pin Q1

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

IVl Chapter 14 Relay & Motor www.freenove.com [l

Circuit

Pay attention to the power supply voltage needed for the components in circuit, in which the relay needs
power supply voltage 5V, and the motor needs 3.3V. Additionally, a LED is used as an indicator for the relay
(turned on or turned off).

Schematic diagram
5\"_
3 _ 3.3V
I N
I's
o Z 1
2l T 4 .
R4 IN4001 3.3V 5V
Relay e N _31spad TXDOl8~ . &
: —51scL1 RXDOMO- Yoo 1ha §
—LIGPIO4 GPIO18!
. :I MW ———1 GPI017 GPI023/16_
é) R3 A31GPI027 GPI024 |18
M 1kQ 15 1GPI022 GPI1025 |22
1 19.1mos| CEOQ}-24— \ 51
- 21IMIS0O CE1}26 —
- 231SCLK SCLO 28—
2L1SDAO GPIO12}32—
. ) 291GPI05 GPIO16 |36
=11GPio6 GPI020 {38~ —
J_ 331GPI013 GPIO21 40 =
-321GPI019
sv— —_33v SL1GPI026 Raspberry Pi
- - GPIO Extension Shield
GND T T GND GND
BreadBoardPower

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 14 Relay & Motor ey

Hardware connection

Raspberry Pi GPIO Extension Shield

@GPI027

#GPI022 GPI1023e
#3V3 GPI024e
#MOSI GNDe
eMISO GPIO25e
#SCK CEOe
@GND CEle
#SDA0 SCLOe
#GPIO5 GNDe
eGPIO6 GPIO12e

L)
L] L ]
Ll LA ]
L] L
L] L
L] A
. LA
L ] LA
LN LA ]
LI LI ]
> o o0 L]
> o o0 L] - e
L B L]
. e o0 L]
. o0 . l
. * CEEEEEED L]
. TR () ()
. T () 0
. wgug B .
. Egg&'v .
* §§ Y
* NI
L ] L B ]
LA ] - L B
* o 00 e o 0o 0
e s & 0 e o o o
e s s 0 e o o o

[
+

O FF AE'EH40 NS AE'E 40 NS

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 14 Relay & Motor www.freenove.com |l

Code

The project code is in the same logic as TableLamp. Press the button to driver the transistor conducted.
Because the relay and LED are connected in parallel, they will be opened at the same time. And if you press
the button again, they will be closed.

C Code 14.1.1 Relay

First observe the project result, and then analyze the code.

1. Use cd command to enter 14.1.1_Relay directory of C code.

2. Use following command to compile "Relay.c” and generate executable file "Relay".

3. Run the generated file "Relay".

After the program is executed, press the button, then the relay is opened, the Motor starts to rotate and LED
is turned on. If you press the button again, the relay is closed, the Motor stops running, and the LED is turned
off.

The following is the program code:

#tinclude <wiringPi.h>
#tinclude <stdio.h>

ttdefine relayPin 0 //define the relayPin
#tdefine buttonPin 1 //define the buttonPin
int relayState=LOW; //store the State of relay
int buttonState=HIGH; //store the State of button
int lastbuttonState=HIGH;//store the lastState of button
long lastChangeTime; //store the change time of button state
long captureTime=50; //set the button state stable time
int reading;
int main(void)
{
if(wiringPiSetup() == -1){ //when initialize wiring fairelay, print message to screen
printf (“"setup wiringPi fairelay !”);
return 1;
}
printf ("Program is starting...\n”);
pinMode (relayPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;
pullUpDnControl (buttonPin, PUD UP);: //pull up to high level
while (1) {
reading = digitalRead (buttonPin); //read the current state of button
if( reading != lastbuttonState) { //if the button state has changed , record the
time point

lastChangeTime = millis();

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 14 Relay & Motor [JNEE]

}
//if changing-state of the button last beyond the time we set,we considered that
//the current button state is an effective change rather than a buffeting
if(millis() - lastChangeTime > captureTime) {
//if button state is changed ,update the data.
if(reading != buttonState) {
buttonState = reading;
//if the state is low , the action is pressing
if (buttonState == LOW) {
printf ("Button is pressed!\n”);
relayState = !relayState;
if(relayState) {

printf ("turn on relay ...\n");
}
else {

printf ("turn off relay ... \n");
}

1
//if the state is high , the action is releasing
else {

printf ("Button is released!\n”);

}
digitalWrite (relayPin, relayState) ;
lastbuttonState = reading;

return 0;

}

The code is in the same logic as TableLamp code above.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 14 Relay & Motor www.freenove.com [l

Python Code 14.1.1 Relay
First observe the project result, and then analyze the code.
1. Use cd command to enter 14.1.1_Relay directory of Python code.

2. Use python command to execute code "Relay.py".

After the program is executed, press the button, then the relay is opened, the Motor starts to rotate and LED
is turned on. If you press the button again, the relay is closed, the Motor stops running, and the LED is turned
off.
The following is the program code:

import RPi.GPIO as GPIO

import time

relayPin = 11 # define the relayPin
buttonPin = 12 # define the buttonPin

debounceTime = 50

def setup():
print ( Program is starting...’)
GPT0. setmode (GPTO. BOARD) # Numbers GPIOs by physical location
GPIO. setup(relayPin, GPIO.OUT) # Set relayPin’s mode is output
GPI0. setup(buttonPin, GPIO. IN)

def loop():
relayState = False
lastChangeTime = round(time. time () *1000)
buttonState = GPIO. HIGH
lastButtonState = GPIO. HIGH
reading = GPIO, HIGH
while True:
reading = GPIO. input (buttonPin)
if reading != lastButtonState :
lastChangeTime = round(time. time () *1000)
if ((round(time. time ) %1000) — lastChangeTime) > debounceTime) :
if reading != buttonState :
buttonState = reading;
if buttonState == GPIO. LOW:
print ("Button is pressed!”)
relayState = not relayState
if relayState:
print ("Turn on relay ...”)
else :
print ("Turn off relay ... ”)

else :

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B ww.freenove.com

Chapter 14 Relay & Motor

print ("Button is released!”)
GPIO. output (relayPin, relayState)
lastButtonState = reading

def destroy():

GPIO. output (relayPin, GPIO.LOW) # relay off
GPI0. cleanup () # Release resource
if name == main ’: # Program start from here
setup ()
try:
Loop ()

except KeyboardInterrupt:
destroy ()

The code is in the same logic as TableLamp code above.

support@freenove.com [l

151



http://www.freenove.com/
mailto:support@freenove.com

YA Chapter 15 Servo www.freenove.com [l

Chapter 15 Servo

We have learned how to control the speed and steering of the motor before. In this chapter, we will learn a
kind of motor that can rotate to a specific angle, servo.

Project 15.1 Servo Sweep

First, let's learn how to make the servo rotate.

Component List

Raspberry Pi 3B x1 Jumper
GPIO Expansion Board & Wire x1

BreadBoard x1

Servo x1

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 15 Servo [NEE]

Component knowledge

Servo

Servo is an auto-control system, consisting of DC motor, reduction gear, sensor and control circuit. Usually,
it can rotate in the range of 180 degrees. Servo can output larger torque and is widely used in model airplane,
robot and so on. It has three lines, including two for electric power line positive (2-VCC, red), negative (3-
GND, brown), and the signal line (1-Signal, orange).

o=

—2
\3
We use 50Hz PWM signal with a duty cycle in a certain range to drive the servo. The lasting time 0.5ms-2.5ms

of PWM single cycle high level corresponds to the servo angle 0 degrees - 180 degree linearly. Part of the
corresponding values are as follows:

High level time | Servo angle
0.5ms 0 degree
1ms 45 degree
1.5ms 90 degree
2ms 135 degree
2.5ms 180 degree

When you change the servo signal, servo will rotate to the designated position.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

kY Chapter 15 Servo www.freenove.com [l

Circuit

Pay attention to the power supply for stepping motor is 5v, and don't confuse the line sequence.

Schematic diagram

3.3V 5v

- SDA1 TXDO }=8—
—24SCL1 RXDO 10
—LAGPIO4 GPIO18}12 U signal
~111GPIO17 GPI023}16~ 21 vee
A3.1GPI027 GPIO24} 18 * 3] GND
-12.1GP1022 GPI025 )22 —
19 Imosi CE0 24~
21Imiso CE1}26 .
231scLK SCLOJ28- =
-2L4spA0 GPIO12}32-
291GPI05 GPIO16 36
-311GPI06 GPI020}-38
33.1GPIO13 GPIO21 40
_&5.5 ; GPIO19

GP1026 Raspberry Pi

GPI0O Extension Shield
GND
Hardware connection

® ® 0 0 9 9 9 O O S S P S P S S S G S e P S S S G O e e eSS S S e
® 8 8 8 8 8 9 6 6 8 S S S S S S S G S S e S eSS e e e e e e e e
® 6 8 9 8 9 8 8 6 e S S S S S S S G P S e S S S S S e e e e e e e
® ® 8 8 9 8 8 S 6 S S S S S S S S S S S S e S S S S e e e e S e e e

et et

Raspberry Pi GPIO Extension Shield

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 15 Servo

Code

In this project, we make the servo rotate from 0 degrees to 180 degrees, and then from 180 degrees to 0
degrees.

C Code 15.1.1 Sweep

First observe the project result, and then analyze the code.

1. Use cd command to enter 15.1.1_Sweep directory of C code.

2. Use following command to compile "Sweep.c" and generate executable file "Sweep".

3. Run the generated file "Sweep".

After the program is executed, the servo will rotate from 0 degrees to 180 degrees, and then from 180 degrees
to 0 degrees, circularly.
The following is the program code:

#tinclude <wiringPi.h>

#include <softPwm.h>

#include <stdio.h>

#tdefine OFFSET MS 3 //Define the unit of servo pulse offset: 0.1lms

#tdefine SERVO MIN MS 5+OFFSET MS //define the pulse duration for minimum angle of
servo

ftdefine SERVO MAX MS 25+0FFSET MS //define the pulse duration for maximum angle of
servo

ftdefine servoPin 1 //define the GPIO number connected to servo

long map (long value, long fromLow, long fromHigh, long toLow, long toHigh) {
return (toHigh—toLow)* (value—fromLow) / (fromHigh-fromLow) + toLow;
}
void servolnit (int pin) { //initialization function for servo PWM pin
softPwmCreate (pin, 0, 200);
}
void servoWrite(int pin, int angle) { //Specif a certain rotation angle (0-180) for the
servo
if(angle > 180)
angle = 180;
if(angle < 0)
angle = 0;
softPwmWrite (pin, map (angle, 0, 180, SERVO MIN MS, SERVO MAX MS)) ;
}
void servoWriteMS (int pin, int ms) { //specific the unit for pulse(5-25ms) with
specific duration output by servo pin: 0. 1ms
if(ms > SERVO MAX MS)
ms = SERVO MAX MS;

support@freenove.com [l

155



http://www.freenove.com/
mailto:support@freenove.com

156

Chapter 15 Servo www.freenove.com [l

if(ms < SERVO MIN MS)
ms = SERVO MIN MS;

softPwmWrite (pin, ms) ;

int main(void)

int i;
if (wiringPiSetup() == -1) { //when initialize wiring faiservo, print message to screen
printf ("setup wiringPi faiservo !7);
return 1;
}
printf ("Program is starting ...\n");
servolnit (servoPin) ; //initialize PWM pin of servo
while (1) {
for (i=SERVO_MIN_MS; i<SERVO_MAX_MS;i++) { //make servo rotate from minimum angle
to maximum angle
servoWlriteMs (servoPin, i) ;
delay (10) ;
}
delay (500) ;
for (i=SERVO_MAX_MS; i>SERVO_MIN MS;i——){ //make servo rotate from maximum angle

to minimum angle

servoWlriteMs (servoPin, i) ;
delay (10) ;
}
delay (500) ;
}
return 0;

}

50 Hz pulse, namely cycle for 20ms, is required to control Servo. In function softPwmCreate (int pin, int

initialValue, int pwmRange), the unit of third parameter pwmRange is 100US, namely 0.1ms. In order to get
the PWM with cycle of 20ms, the pwmRange shoulde be set to 200. So in subfunction of servolnit (), we create
a PWM pin with pwmRange 200.
void servolnit (int pin) { //initialization function for servo PWM pin
softPwmCreate (pin, 0, 200);

As 0-180 degrees of servo corresponds to PWM pulse width 0.5-2.5ms, with PwmRange 200 and unit 0.1ms.
So, in function softPwmWrite (int pin, int value), the scope 5-25 of parameter value corresponds to 0-180
degrees of servo. What’s more, the number writen in subfunction servoWriteMS () should be within the range
of 5-25. However, in practice, due to the manufacture error of each servo, pulse width will also have deviation.
So we define a minimum pulse width and a maximum one and an error offset.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 15 Servo

#tdefine OFFSET MS 3 //Define the unit of servo pulse offset: 0.1lms

#tdefine SERVO MIN MS 5+OFFSET MS //define the pulse duration for minimum angle of
Servo
#tdefine SERVO MAX MS 25+0OFFSET MS //define the pulse duration for maximum angle of
Servo

void servoWriteMS (int pin, int ms) {
if(ms > SERVO MAX MS)
ms = SERVO MAX MS;
if(ms < SERVO MIN MS)
ms = SERVO MIN MS;

softPwmWrite (pin, ms) ;

}

In subfunction servoWrite (), input directly angle (0-180 degrees), and map the angle to the pulse width and
then output it.

void servoWrite(int pin, int angle) { //Specif a certain rotation angle (0-180) for the
servo
if (angle > 180)
angle = 180;
if (angle < 0)
angle = 0;
softPwmWrite (pin, map (angle, 0, 180, SERVO MIN_MS, SERVO_MAX MS)) ;

}

Finally, in the "while" cycle of main function, use two "for" cycle to make servo rotate from 0 degrees to 180
degrees, and then from 180 degrees to 0 degrees.

while (1) {
for (i=SERVO MIN MS:i<SERVO MAX MS;i++) { //make servo rotate from minimum angle
to maximum angle
servoWriteMs (servoPin, i) ;
delay (10) ;
}
delay (500) ;
for (i=SERVO MAX MS:i>SERVO MIN MS;i—){ //make servo rotate from maximum angle
to minimum angle
servoWriteMS (servoPin, i) ;
delay (10) ;
}
delay (500) ;

support@freenove.com [l

157



http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo

Python Code 15.1.1 Sweep
First observe the project result, and then analyze the code.
1. Use cd command to enter 15.1.1_Sweep directory of Python code.

2. Use python command to execute code "Sweep.py".

After the program is executed, the servo will rotate from 0 degrees to 180 degrees, and then from 180 degrees

to 0 degrees, circularly.

The following is the program code:

import RPi.GPIO as GPIO
import time
OFFSE_DUTY = 0.5 ftdefine pulse offset of servo

SERVO_MIN_DUTY
SERVO_MAX_DUTY

2. 5+OFFSE_DUTY #tdefine pulse duty cycle for minimum angle of servo

12. 5+OFFSE_DUTY #tdefine pulse duty cycle for maximum angle of servo

servoPin = 12

def

def

def

map( value, fromLow, fromHigh, toLow, toHigh):
return (toHigh—toLow)*(value—fromLow) / (fromHigh—fromLow) + toLow

setup():

global p

GPI0. setmode (GPTO. BOARD) # Numbers GPIOs by physical location
GPIO. setup(servoPin, GPIO.OUT) # Set servoPin’s mode is output
GPIO0. output (servoPin, GPIO.LOW) # Set servoPin to low

p = GPIO. PWM(servoPin, 50) # set Frequece to 50Hz
p. start (0) # Duty Cycle = 0
servollrite (angle) : # make the servo rotate to specific angle (0-180 degrees)
if (angle<0) :
angle = 0
elif (angle > 180):
angle = 180

p. ChangeDutyCycle (map (angle, 0, 180, SERVO MIN DUTY, SERVO MAX DUTY)) #map the angle to

duty cycle and output it

def loop():

while True:
for dc in range(0, 181, 1): #make servo rotate from 0 to 180 deg
servoWrite (dc) # Write to servo
time. sleep(0.001)
time. sleep(0.5)
for dc in range(180, —1, —1): #make servo rotate from 180 to 0 deg

B support@freenove.com

www.freenove.com Il



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 15 Servo

servoWrite (dc)
time. sleep (0. 001)
time. sleep(0.5)

def destroy():

p. stop ()
GPI0. cleanup ()

if name == main : #Program start from here
print ( Program is starting...’)
setup()
try:
Loop ()

except KeyboardInterrupt: # When ’Ctrl+C’ is pressed, the child program destroy ()

will be executed.

destroy ()

50 Hz pulse, namely cycle for 20ms, is required to control Servo. So we need set PWM frequency of servoPin
to 50Hz.

! p = GPIO. PWM(servoPin, 50) # Set Frequency to bOHz

As 0-180 degrees of servo corresponds to PWM pulse width 0.5-2.5ms within cycle 20ms and to duty cycle
2.5%-12.5%. In subfunction servoWrite (angle), map the angle to duty cycle to output the PWM, then the servo
will rotate a specific angle. However, in practice, due to the manufacture error of each servo, pulse width will
also have deviation. So we define a minimum pulse width and a maximum one and an error offset.

OFFSE DUTY = 0.5 ftdefine pulse offset of servo
SERVO MIN DUTY
SERVO MAX DUTY

2. 5+0FFSE DUTY fidefine pulse duty cycle for minimum angle of servo

12. 5+OFFSE DUTY fidefine pulse duty cycle for maximum angle of servo

def servolirite(angle): #imake the servo rotate to specific angle (0-180 degrees)
if (angle<0) :
angle = 0
elif(angle > 180):
angle = 180

p. ChangeDutyCycle (map (angle, 0, 180, SERVO MIN DUTY, SERVO MAX DUTY))

support@freenove.com [l

159



http://www.freenove.com/
mailto:support@freenove.com

Chapter 15 Servo www.freenove.com [l

Finally, in the "while" cycle of main function, use two "for" cycle to make servo rotate from 0 degrees to 180
degrees, and then from 180 degrees to 0 degrees.
def loop():

while True:

for dc in range(0, 181, 1): #make servo rotate from 0° to 180°
servoWrite (dc) # Write to servo
time. sleep (0. 001)

time. sleep(0.5)

for dc in range(180, —1, -1): #imake servo rotate from 180° to 0°
servoWrite (dc)
time. sleep (0. 001)

time. sleep (0. 5)

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 16 Stepping Motor [iel

Chapter 16 Stepping Motor

We have learned DC motor and servo before: the DC motor can rotate constantly but we can not make it
rotate to a specific angle. On the contrary, the ordinary servo can rotate to a certain angle but can not rotate
constantly. In this chapter, we will learn a motor which can rotate not only constantly, but also to a specific

angle, stepping motor. Using stepping motor can achieve higher accuracy of mechanical motion easily.

Project 16.1 Stepping Motor

In this project, we will learn how to drive stepping motor, and understand its working principle.

Component List

Raspberry Pi 3B x1 Jumper
GPIO Expansion Board & Wire x1

—aS. R4 44
BreadBoard x1

Stepping Motor x1 ULN2003 Stepping motorDriver x1
YA OAN
N

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

5y Chapter 16 Stepping Motor www.freenove.com [l

Component knowledge

Stepping Motor

Stepping motor is an open-loop control device which converts the electric pulse signal into angular
displacement or linear displacement. In non-overload condition, the speed of the motor and the location of
the stop depends only on the pulse signal frequency and pulse number, and not affected by the load changes.
A small four-phase deceleration stepping motor is shown as follows:

o fw o |
oONwW>X>

PWR
Stepper Motor

12345

The schematic diagram of four-phase stepping motor is shown below:

COM

The outside piece is the stator and the inside is the rotor of the motor. There are a certain number of coils,
usually integer multiple of phases number, in the stator and when powered on, an electromagnet will be
formed to attract a convex part (usually iron or permanent magnet) of the rotor. Therefore, the electric
motor can be driven by conducting the coils on stator orderly.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 16 Stepping Motor

A common driving process is as follows:

AL

COM COM

In the course above, the stepping motor rotates a certain angle once, which is called a step. By controlling
the number of rotation steps, you can control the stepping motor rotation angle. By controlling the time
between two steps, you can control the stepping motor rotation speed. When rotating clockwise, the order
of coil powered on is: A>B>C>D—>A~>- . And the rotor will rotate in accordance with the order, step by
step down, called four steps four pats. If the coils is powered on in the reverse order, D>C2>B>A>D>,
the rotor will rotate in anti-clockwise direction.

Stepping motor has other control methods, such as connect A phase, then connect A B phase, the stator will
be located in the middle of the A B, only a half-step. This way can improve the stability of stepping motor,
and reduce noise, the sequence of coil powered on is: A>AB>B>BC>C>CD>D>DA>A—>, the rotor
will rotate in accordance with the order, a half step by a half step, called four step eight pat. Equally, if the coll
is powered on in reverse order, the stepping motor will rotate in reverse rotation.

The stator of stepping motor we use has 32 magnetic poles, so a circle needs 32 steps. The output shaft of

the stepping motor is connected with a reduction gear set, and the reduction ratio is 1/64. So the final output
shaft rotates a circle requiring a 32x64=2048 step.

support@freenove.com [l

163



http://www.freenove.com/
mailto:support@freenove.com

(Y8 Chapter 16 Stepping Motor

www.freenove.com [l

ULN2003 Stepping motor driver

ULN2003 stepping motor driver is used to convert the weak signal into powerful control signal to drive the
stepping motor. The input signal IN1-IN4 corresponds to the output signal A-D, and4 LED is integrated in
the board to indicate the state of signals. The PWR interface can be used as a power supply for stepping
motor. By default, PWR and VCC are connected by a short circuit.

Circuit

AL INg A 18-
2] IN2 B |
311IN3 c {10
Al INa p L1
21 GND pwR J12
L1 vce
Ly pwRr

ULN2003 Stepper

Motor Driver

When building the circuit, the rated voltage of the stepping motor 5V, and use the breadboard power supply
independently, and do not use the RPi power supply. Additionally, breadboard power supply needs to share

Ground with RPi.

Schematic diagram

3.3V

SDA1
SCL1
GPIO4
GPIO17
GPI1027
GP1022
MOSI
MISO
SCLK
SDAO
GPIO5
GPIO6
GPIO13
GPIO19

REESNRE R

5V

TXDO
RXDO
GPIO18
GPI1023
GP1024
GPI1025
CEO
CE1
SCLO
GPIO12
GPIO16
GPI1020
GPI1021

GPIO26 Raspberry Pi
GPIO Extension Shield
GND

oV

N Al A

2] N2 B |2 21

31 IN3 c jo 31c

41 1Ng p U 41p

S1GND  PWR |12 S1pwWR

Llvce

7] pWR Stepper Motor
ULN2003 Stepper

Motor Driver

Eye

v =

GND T T GND

BreadBoardPower

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 16 Stepping Motor IS

Hardware connection

Raspberry Pi GPIO Extension Shield

#3V3 5Ve
#SDA1 SVe
#SCL1 GND»
#GPI04 TXDO»
#GND RXDO#
#GPIO17 GPIO18e
#GPIO27 GNDe
#GPI022 GPIO23e
#3V3 GPI024
#MOSI GND.
sMISO  GPIO25e
#SCK CEOe
#GND CEle
#SDAD SCLOw
#GPIOS GNDe
#GPIO6 GPIO12e
#GPIO13  GNDe
#GPIO19 GPIO16e
#GPI026 GPIO20e
#GND  GPIO21e

b

AE'E 0 AS & AE'E 310 AS

® ® ® 0 0 s s e P e e e e e
® o ® 0 s 0 s s e e e e e e s

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 16 Stepping Motor www.freenove.com [l

Code

This code use four step four pat mode to drive the stepping motor forward and reverse direction.
C Code 16.1.1 SteppingMotor

First observe the project result, and then analyze the code.

1. Use cd command to enter 16.1.1_SteppingMotor directory of C code.

2. Use following command to compile "SteppingMotor.c” and generate executable file "SteppingMotor".

3. Run the generated file "SteppingMotor".

After the program is executed, the stepping motor will rotate 360° clockwise and then 360° anticlockwise,
circularly.
The following is the program code:

#tinclude <stdio.h>

#tinclude <wiringPi.h>

const int motorPins[]={1, 4,5, 6}; //define pins connected to four phase ABCD of
stepping motor
const int CCWStep[]=1{0x01, 0x02, 0x04, 0x08} ; //define power supply order for coil for
rotating anticlockwise
const int CWStep[]={0x08, 0x04, 0x02, 0x01};  //define power supply order for coil for
rotating clockwise
//as for four phase stepping motor, four steps is a cycle. the function is used to drive
the stepping motor clockwise or anticlockwise to take four steps
void moveOnePeriod(int dir, int ms) {
int 1=0, j=0;
for (j=0;j<4;j++){ //cycle according to power supply order
for (i=0;i<4;i++) { //assign to each pin, a total of 4 pins
if(dir == 1) //power supply order clockwise
digitalWrite (motorPins[i], (CCWStep[j] == (1<<i)) ? HIGH : LOW);
else //power supply order anticlockwise
digitalWrite (motorPins[i], (CWStep[j] == (1<<i)) ? HIGH : LOW);
printf ("motorPin %d, %d \n”, motorPins[i], digitalRead (motorPins[i]));
}
printf ("Step cycle!\n”);
if (ms<3) //the delay can not be less than 3ms, otherwise it will exceed
speed limit of the motor
ms=3;

delay (ms) ;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 16 Stepping Motor [iex

//continuous rotation function, the parameter steps specifies the rotation cycles, every
four steps is a cycle
void moveSteps (int dir, int ms, int steps) {

int i;

for(i=0;i<steps;i++) {

moveOnePeriod (dir, ms) ;

}
void motorStop() { //function used to stop rotating
int i;
for (i=0;i<4;i++) {
digitalWrite (motorPins[i], LOW) ;

}
int main(void) {

int 1i;

if (wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
printf ("setup wiringPi failed !7);
return 1;

}

for (1=0;i<4;i++) {
pinMode (motorPins[i], OUTPUT) ;

while (1) {
moveSteps (1, 3,512) ; //rotating  360° clockwise, a total of 2048 steps in a
circle, namely, 512 cycles
delay (500) ;
moveSteps (0, 3, 512) ; //rotating 360° anticlockwise
delay (500) ;
}
return 0;
}

In the code, define four pins of stepping motor and coil power supply order of four steps rotation mode.

const int motorPins[]={1, 4,5, 6}; //define pins connected to four phase ABCD of stepper
motor

const int CCWStep[]=1{0x01, 0x02, 0x04, 0x08} ; //define power supply order for coil for
rotating anticlockwise

const int CWStep[]={0x08, 0x04, 0x02, 0x01};  //define power supply order for coil for

rotating clockwise

Subfunction moveOnePeriod ((int dir,int ms) will drive the stepping motor rotating four step clockwise or
anticlockwise, four step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the servo
will rotate forward, otherwise it rotates to reverse direction. Parameter "ms" indicates the time between each

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

168

Chapter 16 Stepping Motor www.freenove.com [l

two steps. The "ms" of stepping motor used in this project is 3ms (the shortest time), less than 3ms will exceed
the speed limit of stepping motor resulting in that motor can not rotate.

void moveOnePeriod(int dir, int ms) {
int i=0, j=0;
for (j=0;j<4;j++) { //cycle according to power supply order
for (i=0;i<4;i++) { //assign to each pin, a total of 4 pins
if(dir == 1) //power supply order clockwise
digitalWrite (motorPins[i], (CCWStep[j] == (1<<i)) ? HIGH : LOW);
else //power supply order anticlockwise
digitalWrite (motorPins[i], (CWStep[j] == (1<<i)) ? HIGH : LOW);
printf ("motorPin %d, %d \n”, motorPins[i], digitalRead (motorPins[i]));
}
printf ("Step cycle!l\n”);
if (ms<3) //the delay can not be less than 3ms, otherwise it will exceed
speed limit of the motor
ms=3;

delay (ms) ;

}

Subfunction moveSteps (int dir, int ms, int steps) is used to specific cycle number of stepping motor.

——

void moveSteps (int dir, int ms, int steps) {
int 1i;
for(i=0;i<steps;i++) {

moveOnePeriod (dir, ms) ;

}

Subfunction motorStop () is used to stop the stepping motor.

——

void motorStop() { //function used to stop rotating
int 1i;

for (i=0;1<4;i++) {

digitalWrite (motorPins[i], LOW) ;

[—;

}
Finally, in the while cycle of main function, rotate one circle clockwise, and then one circle anticlockwise.
According to the previous knowledge of the stepping motor, it can be known that the stepping motor rotation
for one circle requires 2048 steps, that is, 2048/4=512 cycle.

while (1) {
moveSteps (1, 3, 512) ; //rotating  360° clockwise, a total of 2048 steps in a
circle, namely, this function(four steps) will be called 512 times
delay (500) ;
moveSteps (0, 3, 512) ; //rotating 360° anticlockwise
delay (500) ;
}

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 16 Stepping Motor K]

Python Code 16.1.1 SteppingMotor
First observe the project result, and then analyze the code.
1. Use cd command to enter 16.1.1_SteppingMotor directory of Python code.

2. Use python command to execute code "SteppingMotor.py".

After the program is executed, the stepping motor will rotate 360° clockwise and then 360° anticlockwise,
circularly.
The following is the program code:

import RPi.GPIO as GPIO

import time

motorPins = (12, 16, 18, 22) ftdefine pins connected to four phase ABCD of stepper
motor
CCWStep = (0x01, 0x02, 0x04, 0x08) #define power supply order for coil for rotating

anticlockwise
CWStep = (0x08, 0x04, 0x02, 0x01) #define power supply order for coil for rotating

clockwise

def setup():
print ' Program is starting...’
GPI0. setmode (GPTO. BOARD) # Numbers GPIOs by physical location
for pin in motorPins:
GPI0. setup (pin, GPI0. OUT)
ftas for four phase stepping motor, four steps is a cycle. the function is used to drive
the stepping motor clockwise or anticlockwise to take four steps

def moveOnePeriod(direction, ms):

for j in range(0,4,1): #ticycle for power supply order
for i in range(0, 4, 1): #assign to each pin, a total of 4 pins
if (direction == 1) :#ipower supply order clockwise
GPI0. output (motorPins[i], ((CCWStep[j] == 1<<i) and GPI0.HIGH orGPIO. LOW))
else : fipower supply order anticlockwise
GPTO. output (motorPins[i], ((CWStep[j] == 1<<i) and GPIO0.HIGH or GPIO.LOW))
if(ms(S): #ithe delay can not be less than 3ms, otherwise it will exceed

speed limit of the motor
ms = 3

time. sleep (ms*0. 001)
#continuous rotation function, the parameter steps specifies the rotation cycles, every
four steps is a cycle
def moveSteps(direction, ms, steps):

for i in range(steps):

moveOnePeriod (direction, ms)

#function used to stop rotating

def motorStop():

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

170

Chapter 16 Stepping Motor www.freenove.com [l

for i in range(0, 4, 1) :
GPI0. output (motorPins[i], GP10. LOW)

def loop():
while True:
moveSteps (1, 3,512) #Hrotating 360° clockwise, a total of 2048 steps in a
circle, namely, 512 cycles
time. sleep(0.5)
moveSteps (0, 3, 512) #Hrotating 360° anticlockwise
time. sleep(0.5)

def destroy():

GPI0. cleanup() # Release resource
if name == main : # Program start from here
setup ()
try:
Loop ()

except KeyboardInterrupt: # When ’Ctrl+C’ is pressed, the child program destroy ()
will be executed.

destroy ()

In the code, define four pins of stepping motor and coil power supply order of four steps rotation mode.

motorPins = (12, 16, 18, 22) #tdefine pins connected to four phase ABCD of stepper

motor

CCWStep = (0x01, 0x02, 0x04, 0x08) #define power supply order for coil for rotating
anticlockwise
CWStep = (0x08, 0x04, 0x02, 0x01) #define power supply order for coil for rotating

clockwise

Subfunction moveOnePeriod (direction, ms) will drive the stepping motor rotating four step clockwise or
anticlockwise, four step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the servo
will rotate forward, otherwise it rotates to reverse direction. Parameter "ms" indicates the time between each
two steps. The "ms" of stepping motor used in this project is 3ms (the shortest time), less than 3ms will exceed
the speed limit of stepping motor resulting in that motor can not rotate.

def moveOnePeriod(direction, ms) :

for j in range(0, 4, 1) : ticycle for power supply order
for i in range(0,4, 1): #assign to each pin, a total of 4 pins
if (direction == 1) :#power supply order clockwise
GPI0. output (motorPins[i], ((CCWStep[j] == 1<<i) and GPIO.HIGH orGPIO.LOW))
else : #power supply order anticlockwise
GPI0. output (motorPins[i], ((CWStep[j] == 1<<i) and GPIO.HIGH or GPIO.LOW))
if (ms<3) : #the delay can not be less than 3ms, otherwise it will exceed

speed limit of the motor

ms = 3

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 16 Stepping Motor

- time. sleep (ms*0. 001)

Subfunction moveSteps (direction, ms, steps) is used to specific cycle number of stepping motor.

def moveSteps(direction, ms, steps):
for i in range(steps):

moveOnePeriod (direction, ms)

Subfunction motorStop () is used to stop the stepping motor.

def motorStop():
for i in range(0, 4, 1) :
GPT0. output (motorPins[i], GPTO0. LOW)

Finally, in the while cycle of main function, rotate one circle clockwise, and then one circle anticlockwise.
According to the previous knowledge of the stepping motor, it can be known that the stepping motor rotation
for one circle requires 2048 steps, that is, 2048/4=512 cycle.

while True:
moveSteps (1, 3,512) #rotating 360° clockwise, a total of 2048 steps in a
circle, namely, 512 cycles.
time. sleep (0. 5)
moveSteps (0, 3, 512) #rotating 360° anticlockwise
time. sleep (0. 5)

support@freenove.com [l

171



http://www.freenove.com/
mailto:support@freenove.com

IV Chapter 17 74HC595 & LEDBar Graph

www.freenove.com .

Chapter 17 74HC595 & LEDBar Graph

We have used LEDBar Graph to make a flowing water light, in which 10 GPIO ports of RPi is occupied. More
GPIO ports mean that more peripherals can be connected to RPi, so GPIO resource is very precious. Can we
make flowing water light with less GPIO? In this chapter, we will learn a component, 74HC595, which can

achieve the target.

Project 17.1 Flowing Water Light

Now let's learn how to use 74HC595 to make a flowing water light with less GPIO.

Component List

Raspberry Pi 3B x1
GPIO Extension Board & Wire x1
BreadBoard x1

Jumper

—a. A4 44

7T4HCS95 x1

LEDBar Graph x1

Resistor 220Q x8

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 17 74HC595 & LEDBar Graph

Component knowledge

74HC595

74HC595 chip is used to convert serial data into parallel data. 74HC595 can convert the serial data of one
byte to 8 bits, and send its corresponding level to the corresponding 8 ports. With this feature, 74HC595 can
be used to expand the |O port of Arduino board. At least 3 ports on the RPI board are need to control 8 ports
of 74HC595.

1 16 % Q1 VCC %
2 15 3 Q2 QO 12
3 14 a Q3 DS 13
4 13 < Q4 OF |5
5 12 = Q5 ST.CP |
6 11 = Q6 SH_CP 0
7 10 -1 Q7 MR |5
8 9 —] GND Q7 =
74HC595
The ports of 74HC595 are described as follows:
Pin name Pin number Description
Q0-Q7 15, 1-7 Parallel data output
VCC 16 The positive electrode of power supply, the voltage is 2~6V
GND 8 The negative electrode of power supply
DS 14 Serial data Input
OE 13 Enable output,

When this pin is in high level, Q0-Q7 is in high resistance state
When this pin is in low level, Q0-Q7 is in output mode

ST_CP 12 Parallel update output: when its electrical level is rising, it will update the
parallel data output.

SH_CP 11 Serial shift clock: when its electrical level is rising, serial data input register will
do a shift.

MR 10 Remove shift register: When this pin is in low level, the content in shift register

will be cleared .

Qr 9 Serial data output: it can be connected to more 74HC595 in series.

For more detail, please refer to the datasheet.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

174

Chapter 17 74HC595 & LEDBar Graph

www.freenove.com [l

Circuit

Schematic diagram

330
3.3V 5V
—3{SDA1 TXDO fBe
—21{SCL1 RXDO 10
13 GPIO4 GPIO18}12-
GPIO17 GPI023 16~
,__-13.1GPI1027 GPl024 |18
. 151GPI022 GPI025 22—
2 IMOSI CEOQ b
L1ImIso CE1 S
2313CLK SCLO 8-
2L1SDAOD GPI012}32
-29.1GPI05 GPI0O16 }-36—
-311GPI06 GPI1020 }-38
-331GPI013 GPI021 }40_
-35.1GPI019
' (GP1026 Raspberry Pi
GPIO Extension Shield
GND
Hardware connection

=

Raspberry Pi GPIO Extension Shield

P

® ® e e e e e e e e e e
P e NS e E e e e e

. ;aa

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 17 74HC595 & LEDBar Graph

Code

In this project, make a flowing water light with 74HC595 to learn its usage.
C Code 17.1.1 LightWater02

First observe the project result, and then analyze the code.

1. Use cd command to enter 17.1.1_LightWater02 directory of C code.

2. Use following command to compile “LightWater02.c” and generate executable file “LightWater02".

3. Then run the generated file “LightWater02".

After the program is executed, LEDBar Graph begin to display flowing water light from left to right, then from
right to left.
The following is the program code:

#tinclude <wiringPi.h>
#tinclude <stdio.h>
#tinclude <wiringShift.h>

#tdefine dataPin 0  //DS Pin of 74HC595(Pinl4)
#tdefine latchPin 2  //ST CP Pin of 74HC595(Pin12)
#tdefine clockPin 3 //CH CP Pin of 74HC595(Pinl1)

void shiftOut(int dPin, int cPin, int order, int val) {
int 1i;
for(i = 0; i < 8; it++){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite (dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10);
}
else {//if (order == MSBFIRST) {
digitalWrite(dPin, ((0x80&(val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (10) ;
}
digitalWrite(cPin, HIGH) ;
delayMicroseconds (10) ;

int main(void)
{

int 1i;

unsigned char x;

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

176

Chapter 17 74HC595 & LEDBar Graph www.freenove.com [l

if (wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen

17y .
. ’

printf("setup wiringPi failed
return |;
}
pinMode (dataPin, OUTPUT) ;
pinMode (latchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
x=0x01;
for (i=0;1i<8;i++H) {
digitalWrite (latchPin, LOW) ; // Output low level to latchPin
_shiftOut (dataPin, clockPin, LSBFIRST, x) ;// Send serial data to 74HC595
digitalWrite(latchPin, HIGH); // Output high level to latchPin, and 74HC595
will update the data to the parallel output port
x{<=1; // make the variable move one bit to left once, then the bright LED
move one step to the left once
delay (100) ;
}
x=0x80;
for (i=0;1i<8;i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, LSBFIRST, x) ;
digitalWrite (latchPin, HIGH) ;
x>>=1;
delay (100);

}
return 0;
}
In the code, we configure three pins to control the 74HC595. And define a one-byte variable to control the
state of 8 LEDs through the 8 bits of the variable. The LED lights on when the corresponding bit is 1. If the
variable is assigned to 0x01, that is 00000001 in binary, there will be only one LED on.
! x=0x01;
In the "while” cycle of main function, use “for” cycle to send x to 74HC595 output pin to control the LED. In
“for” cycle, x will be shift one bit to left in one cycle, then in the next round when data of x is sent to 74HC595,
the LED turned on will move one bit to left once.
for (i=0;1<8;i++) {
digitalWrite (latchPin, LOW) ; // Output low level to latchPin
_shiftOut (dataPin, clockPin, LSBFIRST, x) ;// Send serial data to 74HC595
digitalWrite (latchPin, HIGH) ; // Output high level to latchPin, and 74HC595
will update the data to the parallel output port
x<<{=1; // make the variable move one bit to left once, then the bright LED

move one step to the left once
delay (100) ;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 17 74HC595 & LEDBar Graph

[ ) |

In second “for” cycle, the situation is the same. The difference is that x is shift from 0x80 to right in order.
"<<"lis the left shift operator, which can make all bits of 1 byte shift by several bits to the left (high) direction
and add 0 on the right (low). For example, shift binary 00000001 by 1 bit to left:

bytex =1 << 1;

<« <« <« <« <« <« “«—
—lojoJojojojojof1|<]o]
The result of x is 2 (binary 00000010) .
(ofojofojojoj1]o]

There is another similar operator” >>". For example, shift binary 00000001 by 1 bit to right:
bytex=1>>1;
— — — — — — —
[ o|~[ofojofoJoJofo]1]~
The result of x is 0 (00000000) .
(ofofofoJofofofo]

X <<=1lisequivalenttox =x << landx >>= lisequivalenttox =x >>1
About shift function:

This is used to shift an 8-bit data value in with the data appearing on the dPin and the clock being sent out
on the cPin. Order is either LSBFIRST or MSBFIRST. The data is sampled after the cPin goes high. (So cPin
high, sample data, cPin low, repeat for 8 bits) The 8-bit value is returned by the function.

This is used to shift an 8-bit data value out with the data being sent out on dPin and the clock being sent
out on the cPin. order is as above. Data is clocked out on the rising or falling edge — ie. dPin is set, then
cPin is taken high then low — repeated for the 8 bits.

For more details about shift function, please refer to: http://wiringpi.com/reference/shift-library/
Python Code 17.1.1 LightWater02
First observe the project result, and then analyze the code.
1. Use cd command to enter 17.1.1_LightWater02 directory of Python code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/17.1.1_LightWater02
2. Use python command to execute python code “LightWater02.py”.
python LightWater02.py
After the program is executed, LEDBar Graph begin to display flowing water light from left to right, then from
right to left.
The following is the program code:
import RPi.GPIO as GPIO
import time
# Defines the data bit that is transmitted preferentially in the shiftOut function.
LSBFIRST = 1

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com
http://wiringpi.com/reference/shift-library/

IVl Chapter 17 74HC595 & LEDBar Graph www.freenove.com [l

MSBFIRST = 2

ftdefine the pins connect to 74HC595

dataPin = 11 #DS Pin of 74HC595(Pinl4)
latchPin = 13 #ST CP Pin of 74HC595(Pinl2)
clockPin = 15 #SH_CP Pin of 74HC595(Pinll)

def setup():
GPT0. setmode (GPT0. BOARD) # Number GPIOs by its physical location
GPIO. setup(dataPin, GPIO.OUT)
GPIO. setup(latchPin, GPIO. OUT)
GPI0. setup(clockPin, GPIO. OUT)
# shiftOut function, use bit serial transmission.
def shiftOut(dPin, cPin, order, val):
for i in range(0, 8) :
GPI0. output (cPin, GPI0. LOW) ;
if (order == LSBFIRST) :
GPI0. output (dPin, (0x01& (val>>i)==0x01) and GPIO.HIGH or GPIO. LOW)
elif (order == MSBFIRST) :
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)
GPI0. output (cPin, GPI0. HIGH) ;

def loop():
while True:
x=0x01
for i in range(0, 8) :
GPIO. output (latchPin, GPI0. LOW) #Output low level to latchPin
shiftOut (dataPin, clockPin, LSBFIRST, x) #Send serial data to 74HC595
GPI0. output (latchPin, GPI0. HIGH) #Output high level to latchPin, and 74HC595
will update the data to the parallel output port
x<{<=1# make the variable move one bit to left once, then the bright LED move
one step to the left once.
time. sleep (0. 1)
x=0x80
for i in range(0, 8):
GPIO. output (latchPin, GPIO. LOW)
shiftOut (dataPin, clockPin, LSBFIRST, x)
GPIO. output (latchPin, GPIO. HIGH)
x>>=1
time. sleep (0. 1)

def destroy(Q: # When ’Ctrl+C is pressed, the function is executed.
GPIO. cleanup()

if name == main ' : # Program starting from here

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 17 74HC595 & LEDBar Graph

print ('Program is starting...')
setup ()
try:
Loop ()
except KeyboardInterrupt:
destroy()

In the code, we define a shiftOut() function, which is used to output value with bit in order. And where the
dPin for the data pin, cPin for the clock and order for the priority bit flag (high or low). This function conforms
to the operation mode of 74HC595.
def shiftOut(dPin, cPin, order, val) :
for i in range(0, 8) :
GPI0. output (cPin, GPIO. LOW) ;
if (order == LSBFIRST):
GPI0. output (dPin, (0x01& (val>>i)==0x01) and GPIO.HIGH or GPIO. LOW)
elif (order == MSBFIRST):
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)
GPI0. output (cPin, GPI0. HIGH) ;
In the loop () function, we use two “for” cycle to achieve the target. First, define a variable x=0x01, binary
00000001. When it is transferred to the output port of 74HC595, the low bit outputs high level, then a LED is
turned on. Next, x is shifted one bit, when x is transferred to the output port of 74HC595 once again, the LED
turned on will be shifted. Repeat the operation, the effect of flowing water light will be formed. If the direction
of the shift operation for x is different, the flowing direction is different.
def loop():
while True:
x=0x01
for i in range (0, 8) :
GPIO0. output (latchPin, GPTO. LOW) #Output low level to latchPin
shiftOut (dataPin, clockPin, LSBFIRST, x) #Send serial data to 74HC595
GPIO. output (latchPin, GPIO. HIGH) #Output high level to latchPin, and 74HC595
will update the data to the parallel output port
x<<=1# make the variable move one bit to left once, then the bright LED move

one step to the left once.

time. sleep (0. 1)

x=0x80

for i in range(0, 8):
GPTO0. output (latchPin, GPTO. LOW)
shiftOut (dataPin, clockPin, LSBFIRST, x)
GPIO0. output (latchPin, GPTO. HIGH)
x>>=1
time. sleep (0. 1)

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

KOl Chapter 18 74HC595 & 7-segment display. www.freenove.com [l

Chapter 18 74HC595 & 7-segment display.

In this chapter, we will learn a new component, 7-segment display.

Project 18.1 7-segment display.

We will use 74HC595 to control 7-segment display. and make it display sixteen decimal character "0-F".

Component List

Raspberry Pi 3B x1 Jumper
GPIO Extension Board & Wire x1
BreadBoard x1

74HC595 x1 7-segment display x1 Resistor 220Q x8

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 18 74HC595 & 7-segment display.

Component knowledge

7-segment display
7-segment display is a digital electronic display device. There is a figure of "8" and a decimal point, which
consist of 8 LED. According to the difference about common cathode and anode. its internal structure and

pins diagram is shown below:

10 6
eoo0o0o0

3,8
F i
I @f'ﬁ;xo;

D DP..... ®) (@) (@) @) o
1 6 4 2 1 9 10 5

As is known from the above circuit diagram that we can control the state of each LED separately. So, through
combining LED with different state, we can display different numbers. For example, display figure 0: we need
to turn on LED segment A, B, C, D, E, F, and turn off LED segment G and DP

n
nj

In this project, we use a display 7-segment (common anode). Therefore, when the input low level to a LED
segment, the LED will be turned on. Define segment “A” as the lowest level, the segment “DP” as the highest
level, that is, from high to low: “DP”, “G”, “F", “E”, “D", “C", “B”, *A”. And character "0" corresponds to the code:

1100 0000b=0xcO.

support@freenove.com [l

181



http://www.freenove.com/
mailto:support@freenove.com

182

Chapter 18 74HC595 & 7-segment display.

www.freenove.com [l

Circuit

Schematic diagram

3
3.3V 3.3V 5V
Q0 >— /\w—" I —34sDA1 TXDO |8
Q1 o— A ; Q1 veC ]g —2.1sCL1 RXDO 10—
Q2 — W\ 5192 QO fr2 —11GPI04 GPIO18 112~
Q3 AMA= @ DS |13 11;’ GPIO17 GP1023 |16~
Qa AW Q4 OF GPIO27 GPI1024 |18
25 ——AAMN g Q5  ST.CP %/‘ __.151GPI022 GPI025}22
Q6 AN 2los  shcr T -1H{Mos! CEO {24~
27— A ™ a7 MR T—|‘" 211miso CE1}26—
2302 GND Q7 |2 231scLK SCLO |28~
— s -2L1spA0 GPIO12 |32~
— L -294GPIO5 GPI016 35—~
= 3llGPrios GPI020 |38
7SECMENT -33.1GPIO13 GPI021 140
-35.1GPI019
30 GP1026 Raspberry Pi
GPIO Extension Shield
SnD
bp S —
coOM —
oM >
i
.. " e e I ¢ e e m‘ . . .

Raspberry Pi GPIO Extension Shield

=

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 18 74HC595 & 7-segment display.

Code

In this code, uses 74HC595 to control the 7-segment display. The usage of 74HC595 is generally the same to
last section. The content 74HC595 outputs is different. We need code character “0”- “F" one by one, and then
output them with 74HC595.

C Code 18.1.1 SevenSegmentDisplay

First observe the project result, and then analyze the code.

1. Use cd command to enter 18.1.1_SevenSegmentDisplay directory of C code.

2. Use following command to compile “SevenSegmentDisplay.c” and generate executable file
“SevenSegmentDisplay”.

3. Then run the generated file “SevenSegmentDisplay”.

After the program is executed, SevenSegmentDisplay starts to display the character “0"- “F" successively.
The following is the program code:

#tinclude <wiringPi.h>
#tinclude <stdio.h>
#include <wiringShift.h>

#define dataPin 0 //DS Pin of 74HC595(Pinl4)

#tdefine latchPin 2  //ST CP Pin of 74HC595(Pinl12)

#tdefine clockPin 3 //CH _CP Pin of 74HC595(Pinl1)

//encoding for character 0-F of common anode SevenSegmentDisplay

unsigned char
num[]={0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e} ;

void shiftOut(int dPin, int cPin, int order, int val) {
int 1i;
for(i = 0; i < 8; it++){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite(dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ;
}
else {//if (order == MSBFIRST) {
digitalWrite(dPin, ((0x80&(val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (10) ;
}
digitalWrite(cPin, HIGH) ;
delayMicroseconds (10) ;

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

K7 Chapter 18 74HC595 & 7-segment display. www.freenove.com [l

int main(void)
{
int i;
if (wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen
printf ("setup wiringPi failed !”7);
return |;
}
pinMode (dataPin, OUTPUT) ;
pinMode (latchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
for (i=0;i<sizeof (num) ; i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, num[i]) ; //Output the figures and the
highest level is transfered preferentially.
digitalWrite (latchPin, HIGH) ;
delay (500) ;
}
for (i=0;i<sizeof (num) ; i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, num[i] & 0x71);//Use the “&0x7f” to
display the decimal point
digitalWrite (latchPin, HIGH) ;
delay (500) ;

}

return 0;

}

First, put encoding of “0"-“F" into the array.

unsigned char
num[ ]={0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e} :
In the “for” cycle of loop() function, use 74HC595 to output contents of array “num” successively.
SevenSegmentDisplay can correctly display the corresponding characters. Pay attention to that in shiftOut
function, the transmission bit, flag bit highest bit will be transmitted preferentially.
for (i=0;i<sizeof (num) ;i++) {

digitalWrite (latchPin, LOW) ;

_shiftOut (dataPin, clockPin, MSBFIRST, num[i]) ;//Output the figures and the
highest level is transfered preferentially.

digitalWrite (latchPin, HIGH) ;

delay (500) ;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 18 74HC595 & 7-segment display. i

If you want to display the decimal point, make the highest bit of each array become 0, which can be
implemented easily by num[i]&0x7f.
[ | shiftout (dataPin, clockPin, MSBFIRST, num[i] & Ox7f);

Python Code 18.1.1 SevenSegmentDisplay
First observe the project result, and then analyze the code.
1. Use cd command to enter 18.1.1_SevenSegmentDisplay directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/18.1.1_SevenSegmentDisplay
2. Use python command to execute python code “SevenSegmentDisplay.py”.

python SevenSegmentDisplay.py
After the program is executed, SevenSegmentDisplay starts to display the character “0”- “F" successively.
The following is the program code:

import RPi.GPIO as GPIO

import time

LSBFIRST = 1

MSBFIRST = 2

ftdefine the pins connect to 74HC595

dataPin = 11 #DS Pin of 74HC595(Pinl4)
latchPin = 13 #ST CP Pin of 74HC595 (Pinl2)
clockPin = 15 #CH CP Pin of 74HC595 (Pinll)

#SevenSegmentDisplay display the character "0”— “F”successively
num = [0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0xS8e]
def setup():

GPI0. setmode (GPTO. BOARD) # Number GPIOs by its physical location

GPIO. setup(dataPin, GPIO.OUT)

GPI0. setup(latchPin, GPIO. OUT)

GPI0. setup(clockPin, GPIO. OUT)

def shiftOut(dPin, cPin, order, val) :
for i in range(0, 8) :
GPIO. output (cPin, GPIO. LOW) ;
if (order == LSBFIRST):
GPI0. output (dPin, (0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO. LOW)
elif (order == MSBFIRST) :
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)
GPIO. output (cPin, GPIO0. HIGH) ;

def loop():
while True:
for i in range(0, len(num)) :
GPTO0. output (latchPin, GPTO. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, num[i]) #Output the figures and the highest

level is transfered preferentially

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

KOl Chapter 18 74HC595 & 7-segment display. www.freenove.com [l

GPI0. output (latchPin, GP10. HIGH)
time. sleep (0. 5)
for i in range(0, len (num)) :
GPI0. output (latchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, num[i]&0x7f) #Use “&0x7f”to display the
decimal point
GPI0. output (latchPin, GPI0. HIGH)
time. sleep (0. 5)

def destroy(): # When 'Ctrl+C’ is pressed, the function is executed.
GPI0. cleanup()

if name == main : # Program starting from here
print (" Program is starting...’ )
setup ()
try:
Loop ()

except KeyboardInterrupt:
destroy ()

" ow

First, put encoding of “0"-“F" into the array.

! num = [0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0xSe]

In the “for” cycle of loop() function, use 74HC595 to output contents of array “num” successively.
SevenSegmentDisplay can correctly display the corresponding characters. Pay attention to that in shiftOut
function, the transmission bit, flag bit highest bit will be transmitted preferentially.

for i in range (0, len(num)) :
GPTO0. output (latchPin, GPTO. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, num[i]) #Output the figures and the highest
level is transfered preferentially.
GPTO0. output (latchPin, GPTO. HIGH)
time. sleep (0. 5)
If you want to display the decimal point, make the highest bit of each array become 0, which can be
implemented easily by num[i]&0x7f.
. shiftOut (dataPin, clockPin, MSBFIRST, num[i]&0x7f) # Use “&0x7f” to display the decimal

point.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 18 74HC595 & 7-segment display. ks

Project 18.2 4-Digit 7-segment display

Now, let’s try to control more Digit 7-segment display

Component List

Raspberry Pi 3B x1 Jumper

GPIO Expansion Board & Wire x1

BreadBoard x1
74HC595 x1 PNP 4-Digit 7-segment display x1 Resistor 220QQ | Resistor 1KQ
transistor x4 x8 x4

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

kSISl Chapter 18 74HC595 & 7-segment display. www.freenove.com [l

Component knowledge

4 Digit 7-Segment Display
4 Digit 7-segment display integrates four 7-segment display, so it can display more numbers. According to

the difference about common cathode and anode. its internal structure and pins diagram is shown below:

12111098 7

123456
The internal circuit is shown below, and all 8 LED cathode pins of each 7-segment display are connected
together.
_— |12 ‘ — |9 ; - |8 : - |6 ,
SVAVAVAVAVAVAVRVAAVAVAVAVAVAVARVAVAVAVAVAVAVAVSAVAVAVAVAVAVAVAVA

117 14 12 11 [10]5 |3

Display method of 4 Digit 7-segment display is similar to 1 Digit 7-segment display. The difference between
them is that 4-Digit display in turn, one by one, not together. First send high level to common end of the first
tube, and send low level to the rest of the three common end, and then send content to 8 LED cathode pins
of the first tube. At this time, the first 7-segment display will display content and the rest three one in closed
state.

Similarly, the second, third, fourth 7-segment display the content in turn, namely, scan display. Although the
four numbers are displayed in turn separately, but this process is very fast, and due to the optical afterglow
effect and people in vision persistence effect, we can see all 4 numbers at the same time. On the contrary, if
each figure is displayed for a long time, you can see that the numbers are displayed separately.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www .freenove.com

Chapter 18 74HC595 & 7-segment display.

Circuit

Schematic diagram

Ql

R10
1kQ

117 j4 |2 |1 |10

4HC595_Q0
4HC595_Q1
74HC595_Q2
4HC595_Q3
4HC595_Q4
4HC595_Q5
4HC595_Q6
4HC595_Q7

7
7

~is s~

7

74HC595_Q1
74HC535_Q2
74HC595_Q3
74HC595_Q4
74HC595_Q5

74HC595_Q6
74HC595_Q7

2200

o~ U B Wik =

GND

=

=] —
Wi

GPI1024 |I
GPIO2

ey gy gy
=l N,

T
AE

74HC595

—

GPIO17
GPIO27

GPI022

1

33V 5V

—31spA1 TXDO }=8—
—2scL1 RXDO 10—
—LlGPIoa GPIO18H2— Grioi

GPIO17 GPI023116_Grion

GPIO27 GPIO24 118 Grioad

GPIO22 GPIO25}22.

MOSI CEOQ 24—
21dmiso CE1 |8
231scLK SCLO}28-
2L1spao GPIO12 |32
291GPI05 GPIO16|36
211GPios GPI020 |38
-331GPIO13 GPI021 |40
% GPIO19

GPIO26 Raspberry Pi

GPIO Extension Shield
GND

support@freenove.com [l



http://www.freenove.com/
mailto:support@freenove.com

190

Chapter 18 74HC595 & 7-segment display.

www.freenove.com .

Hardware connection

.

.

L .

L -

e o -

.

.

.

L 3 . e

e

« e .

. e .

o CEEE—
L )
e 8
L
L
L

s o 0 0 0 Y -_-..I.n..-...n

S 8 86 8 0 068 08 8 0088880086888

E

E

o-. .‘-'

Raspberry Pi GPIO Extension Shield

L O B

. e 00

|i —%

3 -E.EEE

R

=-%E E_
"éé E =

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 18 74HC595 & 7-segment display.

Code

In this code, we use 74HC595 to control 4-Digit 7-segment display, and use dynamic scanning way to show
the changing numbers.

C Code 18.2.1 StopWatch

First observe the project result, and then analyze the code.

1. Use cd command to enter 16.1.1_SteppingMotor directory of C code.

2. Use following command to compile "StopWatch.c" and generate executable file "StopWatch".

3. Run the generated file "SteppingMotor".

After the program is executed, 4-Digit 7-segment start displaying a four-digit number dynamically, and the
will plus 1 in each successive second.
The following is the program code:

#tinclude <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>
#tinclude <signal.h>
#include <unistd.h>
#tdefine dataPin 5 //DS Pin of 74HC595(Pinl4)
#tdefine latchPin 4 //ST CP Pin of 74HC595(Pinl12)
#tdefine clockPin 1 //CH_CP Pin of T74HC595(Pinl1)
const int digitPin[]={0, 2, 3, 12}; // Define 7-segment display common pin
// character 0-9 code of common anode 7-segment display
unsigned char num[]={0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0x{8, 0x80, 0x90} ;
int counter = 0; //variable counter, the number will be displayed by 7-segment display
//Open one of the 7-segment display and close the remaining three, the parameter digit is
optional for 1,2,4,8
void selectDigit(int digit) {
digitalWrite (digitPin[0], ((digit&0x08) == 0x08) ? LOW : HIGH);
digitalWrite(digitPin[1], ((digit&0x04) == 0x04) ? LOW : HIGH);
digitalWrite (digitPin[2], ((digit&0x02) == 0x02) ? LOW : HIGH);
digitalWrite (digitPin[3], ((digit&0x01) == 0x01) ? LOW : HIGH);
}
void _shiftOut(int dPin, int cPin, int order, int val) {
int 1i;
for(i = 0; i < 8; i+h){
digitalWrite(cPin, LOW) ;
if(order == LSBFIRST) {
digitalWrite (dPin, ((0x01&(vald>>i)) == 0x01) ? HIGH : LOW);

delayMicroseconds (1) ;

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

KV Chapter 18 74HC595 & 7-segment display. www.freenove.com [l

}

else {//if (order == MSBFIRST) {
digitalWrite (dPin, ((0x80&(val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (1) ;

}

digitalWrite(cPin, HIGH) ;

delayMicroseconds (1) ;

}

}

void outData(int8 t data) { //function used to output data for 74HC595
digitalWrite(latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, data) ;
digitalWrite(latchPin, HIGH) ;

}

void display(int dec) { //display function for 7-segment display
int delays = I;
outData (0x () ;
selectDigit (0x01); //select the first, and display the single digit
outData (num[dec%!0]) ;
delay(delays) ; //display duration

outData (0xff);

selectDigit (0x02) ; //select the second, and display the tens digit
outData (num[dec%100/10]) :

delay(delays) ;

outData (0xff);

selectDigit (0x04) ; //select the third, and display the hundreds digit
outData (num[dec%1000/100]) :

delay(delays) ;

outData (0xff) ;
selectDigit (0x08); //select the fourth, and display the thousands digit
outData (num[dec%0000/1000]) ;
delay(delays) ;
}
void timer(int sig){ //Timer function
if(sig == SIGALRM) { //If the signal is SIGALRM, the value of counter plus 1, and
update the number displayed by 7-segment display
counter ++;
alarm(1) ; //set the next timer time

printf(“counter : %d \n”, counter) ;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 18 74HC595 & 7-segment display.

int main(void)
{
int i;
if (wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen
printf ("setup wiringPi failed !”7);
return |;
}
pinMode (dataPin, OUTPUT) ; //set the pin connected to74HC595 for output mode
pinMode (latchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
//set the pin connected to 7-segment display common end to output mode
for (i=0;1<1;i++) {
pinMode (digitPin[i], OUTPUT) ;
digitalWrite(digitPin[i], HIGH) ;
}
signal (SIGALRM, timer); //configure the timer
alarm(1); //set the time of timer to ls
while (1) {
display(counter); //display the number counter
}

}

return 0;

First, define the pin of 74HC595 and 7-segment display common end, character encoding and a variable
"counter” to be displayed counter.

#tdefine dataPin 5 //DS Pin of 74HC595(Pinl4)

ftdefine latchPin 4 //ST CP Pin of 74HC595(Pinl2)

ftdefine clockPin 1 //CH _CP Pin of T74HC595(Pinl1)

const int digitPin[]={0, 2,3, 12}; //Define the pin of 7-segment display common end

// character 0-9 code of common anode 7-segment display
unsigned char num[]={0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90} ;

int counter = 0; //variable counter, the number will be displayed by 7-segment display

Subfunction selectDigit (int digit) function is used to open one of the 7-segment display and close the other
7-segment display, where the parameter digit value can be 1,2,4,8. Using "|" can open a number of 7-segment
display.

void selectDigit(int digit) {
digitalWrite(digitPin[0], ((digit&0x08) == 0x08) ? LOW : HIGH) ;
digitalWrite(digitPin[1], ((digit&0x04) == 0x04) ? LOW : HIGH) ;
digitalWrite(digitPin[2], ((digit&0x02) == 0x02) ? LOW : HIGH) ;
digitalWrite(digitPin[3], ((digit&0x01) == 0x01) ? LOW : HIGH) ;
}
Subfunction outData (int8_t data) is used to make the 74HC595 output a 8-bit data immediately.

void outData(int8 t data) { // function used to output data for 74HC595
digitalWrite(latchPin, LOW) ;

shiftOut (dataPin, clockPin, MSBFIRST, data) ;

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

194

Chapter 18 74HC595 & 7-segment display. www.freenove.com [l

. digitalWrite (1atchPin, HIGH) ;
}

Subfunction display (int dec) is used to make 4-Digit 7-segment display a 4-bit integer. First open the
common end of first 7-segment display and close to the other three, at this time, it can be used as 1-Digit 7-
segment display. The first is used for displaying single digit of "dec", the second for tens digit, third for
hundreds digit and fourth for thousands digit respectively. Each digit will be displayed for a period of time
through using delay (). The time in this code is set very short, so you will see different digit is in a mess. If the
time is set long enough, you will see that every digit is display independent.

void display(int dec){ //display function for 7-segment display
selectDigit (0x01) ; //select the first, and display the single digit
outData (num[dec%10]) ;
delay (1) ; //display duration
selectDigit (0x02) ; //Select the second, and display the tens digit
outData (num[dec%100/107) ;
delay (1) ;
selectDigit (0x04) ; //Select the third, and display the hundreds digit
outData (num[dec%1000/100]) ;
delay (1) ;
selectDigit (0x08) ; //Select the fourth, and display the thousands digit
outData (num[dec%10000/1000]) ;
delay (1) ;

}

Subfunction timer (int sig) is the timer function, wich will set a alarm signal. This function wil be ececuted once
at set intervals. Accompanied by the execution, the variable counter will be added 1, and then reset the time
of timer to 1s.

void timer (int sig) { //timer function

if(sig == SIGALRM) { //If the signal is SIGALRM, the value of counter plus 1, and
update the number displayed by 7-segment display

counter ++;

alarm(1) ; //set the next timer time

[—;

}

Finally, in the main function, configure all the GPIO, and set the timer function.
pinMode (dataPin, OUTPUT) ; //set the pin connected to74HC595 for output mode
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
//set the pin connected to 7-segment display common end to output mode
for (i=0;1<4;i++) {

pinMode (digitPin[i], OUTPUT) ;

digitalWrite (digitPin[i], LOW);

}
signal (SIGALRM, timer); //configure the timer
alarm(l) ; //set the time of timer to 1s

In the while cycle, make the digital display variable counter value. The value will change in function timer (),

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 18 74HC595 & 7-segment display.

so the content displayed by 7-segment display will change accordingly.
while (1) {

display(counter); //display number counter

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 18 74HC595 & 7-segment display.

www.freenove.com Il

Python Code 18.2.1 StopWatch
This code use four step four pat mode to drive the stepping motor forward and reverse direction.
1. Use cd command to enter 16.1.1_SteppingMotor directory of Python code.

2. Use python command to execute code "StopWatch.py".

After the program is executed, 4-Digit 7-segment start displaying a four-digit number dynamically, and the

will plus 1 in each successive second.

The following is the program code:

import RPi.GPIO as GPIO
import time

import threading

LSBFIRST
MSBFIRST = 2

ftdefine the pins connect to 74HC595

dataPin 18 #DS Pin of 74HC595(Pinl4)

latchPin 16 #ST CP Pin of 74HC595 (Pinl2)

clockPin = 12 #SH CP Pin of 74HC595 (Pinll)

num = (0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)
digitPin = (11, 13, 15, 19)

# Define the pin of 7-segment display common end
counter = 0
t =0
def setup():
GPI0. setmode (GPI0. BOARD)
GPIO. setup(dataPin, GPIO.OUT)
GPIO. setup(latchPin, GPIO. OUT)
GPI0. setup(clockPin, GPIO. OUT)
for pin in digitPin:
GPIO. setup (pin, GPI0. OUT)

# define the Timer object

# Number GPIOs by its physical location
# Set pin mode to output

def shiftOut (dPin, cPin, order, val) :
for i in range(0, 8) :
GPIO. output (cPin, GPI0. LOW) ;
if (order == LSBFIRST):
GPIO. output (dPin, (0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)
elif (order == MSBFIRST) :
GPIO. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)
GPIO. output (cPin, GPI0. HIGH)

def outData(data) : #function used to output data for 74HC595
GPIO. output (latchPin, GPIO0. LOW)

# Variable counter, the number will be dislayed by 7-segment display

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 18 74HC595 & 7-segment display.

shiftOut (dataPin, clockPin, MSBFIRST, data)
GPI0. output (1atchPin, GPI0. HIGH)

def selectDigit(digit): # Open one of the 7-segment display and close the remaining
three, the parameter digit is optional for 1,2,4,8
GPI0. output (digitPin[0], GPI0. LOW if ((digit&0x08) == 0x08) else GPIO.HIGH)
GPI0. output (digitPin[1], GPIO0. LOW if ((digit&0x04) == 0x04) else GPIO.HIGH)
GPI0. output (digitPin[2], GPI0. LOW if ((digit&0x02) == 0x02) else GPIO.HIGH)
GPI0. output (digitPin[3], GPI0. LOW if ((digit&0x01) == 0x01) else GPIO.HIGH)

def display(dec): ftdisplay function for 7-segment display
outData(0xff)  #eliminate residual display
selectDigit (0x01) #Select the first, and display the single digit
outData (num[dec%10])
time. sleep (0. 003)  #display duration
outData (0xfT)
selectDigit (0x02) # Select the second, and display the tens digit
outData (num[dec%100//10])
time. sleep (0. 003)
outData (0xfT)
selectDigit (0x04) # Select the third, and display the hundreds digit
outData (num[dec%1000//100])
time. sleep (0. 003)
outData (0xff)
selectDigit (0x08) # Select the fourth, and display the thousands digit
outData (num[dec%10000//1000])
time. sleep (0. 003)
def timer(): #timer function

global counter

global t
t = threading. Timer (1. 0, timer) #ireset time of timer to ls
t. startQ #Start timing

countert=1

print (“counter : %d”%counter)

def loop():
global t
global counter
t = threading. Timer (1. 0, timer) #set the timer
t. startQ # Start timing
while True:

display(counter) # display the number counter

def destroy(): # When "Ctrl+C” is pressed, the function is executed.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

198

Chapter 18 74HC595 & 7-segment display. www.freenove.com [l

global t
GPIO. cleanup()
t. cancel () #icancel the timer
if name == main ’: # Program starting from here
print ( Program is starting...’ )
setup ()
try:
Loop ()
except KeyboardInterrupt:
destroy ()

First, define the pin of 74HC595 and 7-segment display common end, character encoding and a variable
"counter” to be displayed counter.

dataPin = 18 #DS Pin of 74HC595(Pinl4)
latchPin = 16 #ST CP Pin of 74HC595 (Pinl2)
clockPin = 12 #CH CP Pin of 74HC595 (Pinll)

num = (0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)
digitPin = (11, 13, 15, 19) # Define the pin of 7-segment display common end

counter = 0 # Variable counter, the number will be displayed by 7-segment display

Subfunction selectDigit (digit) function is used to open one of the 7-segment display and close the other 7-
segment display, where the parameter digit value can be 1,2,4,8. Using "|" can open a number of 7-segment
display.

def selectDigit(digit): #Open one of the 7-segment display and close the remaining three
the parameter digit is optional for 1,2,4,8

GPI0. output (digitPin[0], GPTO. LOW if ((digit&0x08) == 0x08) else GPIO.HIGH)

GPIO. output (digitPin[1], GPTO. LOW if ((digit&0x04) == 0x04) else GPIO.HIGH)

GPIO. output (digitPin[2], GPTO. LOW if ((digit&0x02) == 0x02) else GPIO.HIGH)

GPIO. output (digitPin[3], GPTO. LOW if ((digit&0x01) == 0x01) else GPIO.HIGH)
Subfunction outData (data) is used to make the 74HC595 output a 8-bit data immediately.
def outData(data): #function used to output data for 74HC595

GPTO0. output (latchPin, GPTO. LOW)

shiftOut (dataPin, clockPin, MSBFIRST, data)

GPTO0. output (latchPin, GPTO. HIGH)
Subfunction display (dec) is used to make 4-Digit 7-segment display a 4-bit integer. First open the common
end of first 7-segment display and close to the other three, at this time, it can be used as 1-Digit 7-segment
display. The first is used for displaying single digit of "dec", the second for tens digit, third for hundreds digit
and fourth for thousands digit respectively. Each digit will be displayed for a period of time through using
delay (). The time in this code is set very short, so you will see different digit is in a mess. If the time is set long
enough, you will see that every digit is display independent.

def display(dec): ftdisplay function for 7-segment display
outData(0xff)  #eliminate residual display
selectDigit(0x01)  #Select the first, and display the single digit
outData(num[dec%10])
time. sleep(0.003)  #display duration

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 18 74HC595 & 7-segment display.

outData (0xff)

selectDigit (0x02) #Select the second, and display the tens digit

outData (num[dec%100/10])

time. sleep (0. 003)

outData (0xff)

selectDigit (0x04) #Select the third, and display the hundreds digit

outData (num[dec%1000/100])

time. sleep (0. 003)

outData (0xff)

selectDigit (0x08) #Select the fourth, and display the thousands digit

outData (num[dec%10000/1000])

time. sleep (0. 003)

Subfunction timer () is the timer callback function. When the time is up, this function will be executed.
Accompanied by the execution, the variable counter will be added 1, and then reset the time of timer to 1s.
1s later, the function will be executed again.

def timer(): #timer function

global counter

global t
t = threading. Timer (1.0, timer) fireset time of timer to 1s
t. start () #Start timing

counter+=1

print (“counter : %d”%counter)

Subfunction setup(), configure all input output modes for the GPIO pin used.
Finally, in loop function, make the digital tube display variable counter value in the while cycle. The value will
change in function timer (), so the content displayed by 7-segment display will change accordingly.
def loop():
global t

global counter

t = threading. Timer (1. 0, timer) # set the timer
t. start () #Start timing
while True:

display (counter) #display the number counter

After the program is executed, press "Ctrl+C", then subfunction destroy() will be executed, and GPIO resources
and timers will be released in this subfunction.

def destroy(): # When ’Ctrl+C’ 1is pressed, the function is executed
global t
GPI0. cleanup ()
t. cancel () # cancel the timer

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

YO Chapter 19 74HC595 & LED Matrix

www.freenove.com .

Chapter 19 74HC595 & LED Matrix

We have learned how to use 74HC595 to control LEDBar Graph and Seven-SegmentDisplay. And we will

continue to use the 74HC595 to control more LED, LEDMatrix.

Project 19.1 LED Matrix

In this project, we will use two 74HC595 to control a monochrome LEDMatrix (8+8) to make it display some

graphics and characters.

Component List

Raspberry Pi 3B x1
GPIO Extension Board & Wire x1
BreadBoard x1

Jumper

—aa. -

7T4HCS95 x2

8+8 LEDMatrix x1

Resistor 220Q x8

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 19 74HC595 & LED Matrix

Component knowledge

LED matrix
LED matrix is a rectangular display module that consists of several LEDs. The following is an 8*8 monochrome
LED matrix with 64 LEDs (8 rows and 8 columns).

161514131211 10 9
00000000
00000000
00000000
00000000

123456738

In order to facilitate the operation and save the ports, positive pole of LEDs in each row and negative pole of
LEDs in each column are respectively connected together inside LED matrix module, which is called Common
Anode. There is another form. Negative pole of LEDs in each row and positive pole of LEDs in each column
are respectively connected together, which is called Common Cathode.

The one we use in this project is a common anode LEDMatrix.

Connection mode of common anode Connection mode of common cathode
13 3 410 6111516 13 3410 6111516

b= X

B~ o0 RO
RO PR KPR PR PR

e e S S - - d
P PR Pe P P Pe PR PR
Pe P P P P Pe P Pe
P PR Pr PR P PR PR PR
P P P P P PR PR PR
PP PR PR PR PR PR PR
P PR Pr PR Pr Pe PR PR
R R K R K KR K

P P s PR P PR
P P s P P P P
b P s P P P P
b P P s P b s P
I P s P P

b P P P PP P P
%K KK K KK K
U‘II\)‘-JASOO-PUD

support@freenove.com [l

201



http://www.freenove.com/
mailto:support@freenove.com

202

Chapter 19 74HC595 & LED Matrix www.freenove.com [l

Let us learn how connection mode of common anode works. Choose 16 ports on RPI board to connect to the
16 ports of LED Matrix. Configured one port in columns for low level, which make the column of the port
selected. Then configure the eight ports in row to display content in the selected column. Delay for a moment.
And then select the next column and outputs the corresponding content. This kind of operation to column is
called scan. If you want to display the following image of a smiling face, you can display it in 8 columns, and
each column is represented by one byte.

1 2 3 45 6 7 8
0/0(0|0|0f0O|O0O]|O
O(0|1|1|1|2(0|0
0/1/0|10|0f0|1]0
1{0/1]0(0|1|0]|1
1{0/0|0|0|0]|0]|12
110{0|{1|1]0|0]|1
0/1/010|0f0|1]0
0(0|1|1|1|112(0|0

Column Binary Hexadecimal

1 0001 1100 Oxlc

2 0010 0010 0x22

3 0101 0001 0x51

4 0100 0101 0x45

5 0100 0101 0x45

6 0101 0001 0x51

7 0010 0010 0x22

8 0001 1100 Ox1c

First, display the first column, then turn off the first column and display the second column...... turn off the
seventh column and display the 8th column, and then start from the first column again like the control of
Graph LEDBar. The whole progress will be repeated rapidly and circularly. Due to afterglow effect of LED and
visual residual effect of human eyes, we will see a picture of a smiling face directly rather than LED are turned
on one column by one column (although in fact it is the real situation).

Scanning rows is another display way of dot matrix. Whether scanning line or column, 16 GPIO are required.
In order to save GPIO of control board, two 74HC595 is used. Every piece of 74HC595 has eight parallel output
ports, so two pieces has 16 ports in total, just enough. The control line and data line of two 74HC595 are not
all connected to the RPi, but connect Q7 pin of first stage 74HC595 to data pin of second one, namely, two
T4HC595 are connected in series. It is the same to using one "74HC595" with 16 parallel output ports.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www .freenove.com Chapter 19 74HC595 & LED Matrix [ASK}

Circuit

In this project circuit, the power pin of 74HC595 is connected to 3.3V. It can also be connected to 5V to make
LEDMatrix brighter.

Schematic diagram
3.3V 3.3V
16 1 16
Y 2l ol
82 ICIJ)E 3 || i gi gé —~—-13 < dataPin| ||
Qs ST_CP ﬁ latchPir] g Q5 ST CP ]12
Q6 SH_CP 0 clockPir| 5 Q6 SH_CP 0 o
Q7 MR Q7 MR o
GND Q7 i——}; 2200 ]i GND Q7 |2
— 74HC595 — 74HC595
ERI
[8-‘ [;‘ E E @ E B Eéj 3.3v 5V
—3.1SDA1 TXDO |8~
13 3 4 10 6 11 15 16
el SCL 1 RXDO |0
rowd o X X A A —L1GPI04 GPIO18 |12~
dataPin GPI017 GPI1023 |16
[rowz X A X A A latchPin GP1027 GP1024 |18
GPI1022 GPI025 |-22—
lrows o X X A A -19dmos| CEO0 }-24-
21Imiso CE1}-26—
-2L4SDAOD GPIO12 |32~
Wﬁ( X x| A X A -29.1GPIO5 GPIO16 36—
B -S11GPI06 GPI020}-38—
-33.1GPIO13 GPI021 40—
-221GPIO19
Zﬂ( M A A M X ~31GPI026 Raspberry Pi
GPIO Extension Shield
s%%%%%%%% i

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

204

Chapter 19 74HC595 & LED Matrix

www.freenove.com .

Hardware connection

Second stage L
74HC595: B
j\

e e e e e |e e
L] L]
L]

L]

Illlﬁ- .

First stage

74HCS95: A
T

-
L
.
s o
17019 OND S
#0201d9 920149 [3
#9,01d9 610149* |3
Ll

.

.

.

L]

® e e o0

e e e e
ccooct.cccl
.

L]

#G70IdD  OSIA® .
ISON® .

715 ] c———

SET0IdD TZOIdO® Ll

*® e e 0 0
* e e 0 0

PIa1yg uoisua)x3 OIdo Id Auagqdsey

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 19 74HC595 & LED Matrix e

Code

Two 74HC595 are used in this project used, one for controlling columns of LEDMatrix, another for lines. And
two 74HC595 are connected in cascade way (series) and has 16 output port. Because shiftOut () function
output 8-bit data once, twice shiftOut () function are required and data of second stage 74HC595 should be
transmitted preferentially. There are two 74HC595 in this project circuit, A (first stage) and B (second stage).
When the RPi uses shiftOut() function to send data "datal", data of A port will be "datal”, and data of B will
be 0. Next, use shiftOut() to send "data2", then data "datal" of A will be moved to B and new data "data2"
will be moved to A. According to the circuit connection, line data should be sent first, then send column data.
The following code will make LEDMatrix display a smiling face, and then display scrolling character "0-F".
C Code 19.1.1 LEDMatrix
First observe the project result, and then analyze the code.
1. Use cd command to enter 19.1.1_LEDMatrix directory of C language.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/19.1.1_LEDMatrix
2. Use following command to compile “LEDMatrix.c” and generate executable file “LEDMatrix”.

gcc LEDMatrix.c —o LEDMatrix —lwiringPi
3. Then run the generated file “LEDMatrix”.

sudo ./LEDMatrix
After the program is executed, LEDMatrix will display a smiling face, and then the display scrolling character
"0-F", circularly.
The following is the program code:

#tinclude <wiringPi.h>
#tinclude <stdio.h>
#tinclude <wiringShift.h>

#define dataPin 0 //DS Pin of 74HC595(Pinl4)

#tdefine latchPin 2  //ST CP Pin of 74HC595(Pinl12)

ftdefine clockPin 3 //SH_CP Pin of 74HC595(Pinl1)

// data of smiling face

unsigned char pic[]={0xlc, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, Ox1c};

unsigned char datal[]={ // data of "0-F”
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ” 7~
0x00, 0x00, O0x3E, 0x41, Ox41, 0x3E, 0x00, 0x00, // “0”
0x00, 0x00, 0x21, 0x7F, 0x01, 0x00, 0x00, 0x00, // "1”
0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00, // "2”
0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00, // ”3”
0x00, 0x00, O0xOE, 0x32, Ox7F, 0x02, 0x00, 0x00, // "4”
0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00, // ”5”
0x00, 0x00, 0x3E, 0x49, 0x49, 0x26, 0x00, 0x00, // "6”
0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00, // "7”
0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00, // "8
0x00, 0x00, 0x32, 0x49, 0x49, 0x3E, 0x00, 0x00, // ”9”
0x00, 0x00, 0x3F, 0x44, 0x44, 0x3F, 0x00, 0x00, // "A”

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

POl Chapter 19 74HC595 & LED Matrix www.freenove.com [l

0x00, 0x00, Ox7F, 0x49, 0x49, 0x36, 0x00, 0x00, // “B”
0x00, 0x00, Ox3E, 0x41, Ox41, 0x22, 0x00, 0x00, // “C”
0x00, 0x00, Ox7F, 0x41, Ox41, O0x3E, 0x00, 0x00, // “D”
0x00, 0x00, Ox7F, 0x49, 0x49, 0x41, 0x00, 0x00, // "E”
0x00, 0x00, OxT7F, 0x48, 0x48, 0x40, 0x00, 0x00, // "F”
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ”~ ”
b
void shiftOut(int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i < 8; i+H){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite(dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ;
}
else {//if (order == MSBFIRST) {
digitalWrite(dPin, ((0x80& (val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (10) ;
}
digitalWrite(cPin, HIGH) ;
delayMicroseconds (10) ;

}
int main(void)
{
int i, j, k;
unsigned char x;
if (wiringPiSetup() == —1) { //when initialize wiring failed, print messageto screen
printf(“setup wiringPi failed !”);
return |;
}
pinMode (dataPin, OUTPUT) ;
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
for (j=0; j<500; j++) {// Repeat enough times to display the smiling face a period of
time
x=0x80;
for (i=0;i<8;i++) {
digitalWrite (IatchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, pic[i]);// first shift data of line
information to the first stage 74HC959
_shiftOut (dataPin, clockPin, MSBFIRST, “x) ;//then shift data of column
information to the second stage 74HC959

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 19 74HC595 & LED Matrix

digitalWrite (latchPin, HIGH) ;//Output data of two stage 74HC595 at the
same time

x>>=1;// display the next column

delay (1) ;

}
for (k=0;k<sizeof (data) —8;k++) { //sizeof(data) total number of “0-F” columns
for (j=0; j<20; j++) {// times of repeated displaying LEDMatrix in every frame,
the bigger the “j”, the longer the display time
x=0x80; // Set the column information to start from the first column
for (i=k; i<8+k; i++) {
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, MSBFIRST, datali]) ;
shiftOut (dataPin, clockPin, MSBFIRST, ~x) ;
digitalWrite (latchPin, HIGH) ;
x>=1;
delay (1) ;

}

return 0;
}

The first “for” cycle in the “while” cycle is used to display a static smile. Display column information from left

to right, one column by one column, totally 8 columns. Repeat 500 times to ensure display time enough.

for (j=0; j<500; j++) {// Repeat enough times to display the smiling face a period
of time

x=0x80;

for (1=0;1<8;i++) {
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, MSBFIRST, pic[il) ;
shiftOut (dataPin, clockPin, MSBFIRST, “x) ;
digitalWrite (latchPin, HIGH) ;
x>>=1;
delay (1) ;

}
The second “for” cycle is used to display scrolling characters "0-F", totally 18*8=144 columns. Display the O-
8 column, 1-9 column, 2-10 column..... 138-144 column in turn to achieve scrolling effect. The display of

each frame is repeated a certain number of times, and the more times the number of repetitions, the longer
the single frame display, the slower the rolling.
- for (k=0;k<sizeof (data) -8;k++) { //sizeof(data) total number of “0-F” columns ‘

support@freenove.com [l

207



http://www.freenove.com/
mailto:support@freenove.com

POl Chapter 19 74HC595 & LED Matrix www.freenove.com [l

for (j=0; j<20; j*++) {// times of repeated displaying LEDMatrix in every frame,
the bigger the “j”, the longer the display time
x=0x80; // Set the column information to start from the first column
for(i=k;i<8+k;i++) {
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, MSBFIRST, datali]) ;
shiftOut (dataPin, clockPin, MSBFIRST, “x) :
digitalWrite (latchPin, HIGH) ;
x>>=1;
delay (1) ;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 19 74HC595 & LED Matrix |G

Python Code 19.1.1 LEDMatrix
First observe the project result, and then analyze the code.
1. Use cd command to enter 19.1.1_LEDMatrix directory of Python language.

2. Use python command to execute python code “LEDMatrix.py”.

After the program is executed, LEDMatrix will display a smiling face, and then the display scrolling character
"0-F", circularly.
The following is the program code:

import RPi.GPIO as GPIO

import time

LSBFIRST =

MSBFIRST = 2

ftdefine the pins connect to 74HC595

dataPin = 11 #DS Pin of 74HC595(Pinl4)
latchPin = 13 #ST CP Pin of 74HC595 (Pinl2)
clockPin = 15 #SH CP Pin of 74HC595(Pinll)

pic = [0Oxlc, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, Ox1c]# data of smiling face
data = [#data of "0-F”
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, Ox3E, 0x41, O0x41, Ox3E, 0x00, 0x00,
0x00, 0x00, 0x21, 0x7F, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00,
0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, OxOE, 0x32, Ox7F, 0x02, 0x00, 0x00,
0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00,
0x00, 0x00, Ox3E, 0x49, 0x49, 0x26, 0x00, 0x00,
0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00,
0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, 0x32, 0x49, 0x49, O0x3E, 0x00, 0x00,
0x00, 0x00, Ox3F, 0x44, 0x44, O0x3F, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, Ox3E, Ox41, 0x41, 0x22, 0x00, 0x00,
0x00, 0x00, Ox7F, Ox41, 0x41, O0x3E, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x49, 0x49, 0x41, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x48, 0x48, 0x40, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

H O OH = O H O HF OH O H OH OH O H O H OH O H OH O H H O R

def setup():
GPI0. setmode (GP10. BOARD) # Number GPIOs by its physical location
GPIO0. setup(dataPin, GPIO.OUT)
GPTO0. setup (latchPin, GPIO. OUT)
GPTO0. setup(clockPin, GPIO.OUT)

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 19 74HC595 & LED Matrix www.freenove.com [l

def shiftOut(dPin, cPin, order, val) :
for i in range(0, 8) :
GPI0. output (cPin, GPI0. LOW) ;
if (order == LSBFIRST) :
GPI0. output (dPin, (0x01& (val>>i)==0x01) and GPIO.HIGH or GPIO. LOW)
elif (order == MSBFIRST):
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO. LOW)
GPI0. output (cPin, GPI0. HIGH) ;

def loop():
while True:
for j in range (0, 500) :# Repeat enough times to display the smiling face a period
of time
x=0x80
for i in range(0,8):
GPI0. output (1atchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, pic[i]) #first shift data of line
information to first stage 74HC959

shiftOut (dataPin, clockPin, MSBFIRST, “x) #then shift data of column
information to second stage 74HC959
GPIO. output (latchPin, GPI0. HIGH) # Output data of two stage 74HC595 at the
same time
time. sleep (0. 001)# display the next column
x>=1
for k in range (0, len(data)-8) :#len(data) total number of “0-F” columns
for j in range(0, 20) :# times of repeated displaying LEDMatrix in every frame,
the bigger the 7j”, the longer the display time
x=0x80 # Set the column information to start from the first column
for i in range(k, k+8):
GPIO. output (latchPin, GPIO0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, datal[i])
shiftOut (dataPin, clockPin, MSBFIRST, ~x)
GPIO. output (latchPin, GPIO. HIGH)
time. sleep (0. 001)
x>>=1
def destroy(Q: # When ’Ctrl+C is pressed, the function is executed.
GPI0. cleanup ()

if name == main ’: # Program starting from here
print ( Program is starting... )
setup ()
try:
loop ()

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 19 74HC595 & LED Matrix

except KeyboardInterrupt:
destroy()

The first “for” cycle in the “while” cycle is used to display a static smile. Display column information from left
to right, one column by one column, totally 8 columns. Repeat 500 times to ensure display time enough.

for j in range(0, 500) :# Repeat enough times to display the smiling face a period
of time
x=0x80
for i in range(0,8):
GPIO. output (latchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, pic[i]) #first shift data of line
information to first stage 74HC959
shiftOut (dataPin, clockPin, MSBFIRST, “x) #then  shift data of  column
information to first stage 74HC959

GPI0. output (latchPin, GPI0. HIGH) # Output data of two stage 74HC595 at the
same time.

time. sleep (0. 001)# display the next column

=1
The second “for” cycle is used to display scrolling characters "0-F", totally 18*8=144 columns. Display the 0-
8 column, 1-9 column, 2-10 column..... 138-144 column in turn to achieve scrolling effect. The display of
each frame is repeated a certain number of times, and the more times the number of repetitions, the longer
the single frame display, the slower the rolling.

for k in range (0, len(data)-8) :#len(data) total number of “O0-F” columns

for j in range(0, 20) :# times of repeated displaying LEDMatrix in every frame,
the bigger the “j”, the longer the display time
x=0x80 # Set the column information to start from the first column
for i in range (k, k+8) :
GPI0. output (latchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, data[il])
shiftOut (dataPin, clockPin, MSBFIRST, ~x)
GPIO0. output (latchPin, GPI0. HIGH)
time. sleep (0. 001)
xO>=1

support@freenove.com [l

211



http://www.freenove.com/
mailto:support@freenove.com

YAVl Chapter 20 LCD1602 www.freenove.com [l

Chapter 20 LCD1602

In this chapter, we will learn a display screen, LCD1602.

Project 20.1 12C LCD1602

LCD1602 can display 2 lines of characters in 16 columns. It can display numbers, letters, symbols, ASCIl code
and so on. As shown below is a monochrome LCD1602 display screen, and its circuit pin diagram:

— NN LN~ 000 — —

LCD1602

I2C LCD1602 integrates a I12C interface, which connects the serial-input &parallel-output module to LCD1602.
We just use 4 lines to the operate LCD1602 easily.

- GND

2lycc ||wmmmm
_i SDA EEEENR
-4 scL —

[2C LCD1602 Module

The serial-to-parallel chip used in this module is PCF8574(PCF8574A), and its default 12C address is 0x27(0x3F),
and you can view all the RPI bus on your 12C device address through command "i2cdetect -y 1" to. (refer to
the "configuration I2C" section below) below is the PCF8574 pin schematic diagram and the block pin diagram:

PCF8574 chip pin diagram: PCF8574 module pin diagram

= e |11

A1 [2] [15] spA =0 g 3

A2 [3] [14] scL (ZD L>) R

Po [4] pcresza |31 INT N
PCF8574A 75

P1[5] 12] P7 % A 66O % E

Noo~®N T OHWON~M

P2 L] 1] e O>>daazzzzdaadaaao |f

P3 [7] 0] Ps O] —| N 0| <] 0] ©

. —| [ of | 0] o]~ o 2| | N 2 T 2] €

ss [8] 0] P4

PCF8574 module pin and LCD1602 pin are corresponding to each other and connected with each other:

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 20 LCD1602

vssH— enD

vob}2-2{vbb  onD}—
volP—31 vo veel—
rRs|4-4| po SDA|—

rRw 22| p1 scLf—
EIS 6]po

peolZ—7] NC

pe1/8-8] NC

pe2|2 91 ne

pe3 {1919 Ne

D4 {111 py

0551213 P5

DBG6[>12 PG

DB7
LED+[[515 p3
LeD-[618} onD

LCD1602 PCF8574

So, we can use just 4 pins to control LCD1602 with 16 pins easily through 12C interface.
In this project, we will use I2CLCD1602 to display some static characters and dynamic variables.

Component List

Raspberry Pi 3B x1 Jumper
GPIO Extension Board & Wire x1
BreadBoard x1

I2C LCD1602 Module x1

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

AVl Chapter 20 LCD1602 www.freenove.com [l

Circuit

Note that the power supply for I2CLCD1602 in this circuit is 5V.

Schematic diagram

GND J
mmmmnE|l vyvcc 2 3.3V 5v
LLLLL| g7y 3 IspA1 TXDO -8

scL |4 S 1scL1 RXDO -0
—LIGPIO4 GPIO18 12—
12C LCD1602 Module _1_‘|_ GPIO17 GPIO23 _1_6_
31GPIO27 GPI1024 |18
2 {GPI022 GPI1025|22—
19 Imos| CEO0}24—
21Imiso CE1}26
231sCLK SCLO 28—
221spA0 GPIO12}32—
291GPI05 GPIO16}36
S1GpPios GP1020}38
331GPI013 GP1021 40

% GPIO19

GPI026 Raspberry Pi
GPIO Extension Shield
GND
Hardware connection

T 9 0 9 9 P P P S P P P P P SN PN ISP
® 9 9 9 9 P S P P P P P P P P PP ISR
® 9 9 9 S P P O S P P P S S PP PSSP
® 9 9 9 P S P S P P P P S S S S sOE
® 9 9 9 9 P P 9 P P S S P P S P S P PSSP e

® 9 9 P P S P T T e PSS eSS
® * 9 9 e e e e e e e S
---------------------------

Pt

Raspberry Pi GPIO Extension Shield

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 20 LCD1602

Code

This code will get the CPU temperature and system time of RPi, display them on LCD1602.

C Code 20.1.1 12CLCD1602

First observe the project result, and then analyze the code.

1. Use cd command to enter 20.1.1_ 12CLCD1602 directory of C code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/20.1.1_12CLCD1602

2. Open the file 12CLCD1602.c, and find the macro definition "pcf8574_address". If your serial-to-parallel
module uses chip PCF8574, set the macro "pcf8574_address" value to 0x27.If your serial-to-parallel
module uses chip PCF8574A, set the macro "pcf8574_address" value to Ox3F.

14 //#define pcfB8574 address 0x27 /i default I2C address of Pcfgs74
15 #define pcfB574_address 0x3F S/ default I2C address of Pcfas74a

3. Use following command to compile “I2CLCD1602.c” and generate executable file “I2CLCD1602".
gce 12CLCD1602.c —o 12CLCD1602 —lwiringPi —lwiringPiDev
4. Then run the generated file “I2CLCD1602".
sudo ./ 12CLCD1602
After the program is executed, LCD1602 screen will display current CPU temperature and system time. If there
is no display or the display is not clear, adjust potentiometer of PCF8574 module to adjust the contrast of
LCD1602 until the screen can display clearly.
The following is the program code:
#include <stdlib.h>
#include <stdio.h>
#tinclude <wiringPi.h>
#tinclude <pcf8574.h>
#include <lcd. h>
#include <time. h>

//#define pcf8574 address 0x27 // default I2C address of Pcf8574
ttdefine pcf8574 address 0x3F // default 12C address of Pcf8574A
#tdefine BASE 64 // BASE is not less than 64

//////// Define the output pins of the PCF8574, which are directly connected to the
LCD1602 pin.

#tdefine RS BASE+0
#tdefine RW BASE+1
#tdefine EN BASE+2
#tdefine LED BASE+3
#tdefine D4 BASE+4
#tdefine D5 BASE+5
#tdefine D6 BASE+6
#tdefine D7 BASE+7

int lcdhd;// used to handle LCD
void printCPUTemperature() {// subfunction used to print CPU temperature

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

YAl Chapter 20 LCD1602 www.freenove.com [l

}

FILE *fp;

char str_temp[15];

float CPU_temp;

// CPU temperature data is stored in this directory.
fp=fopen(”/sys/class/thermal/thermal zoneO/temp”, "r”);

fgets(str temp, 15, fp) ; // read file temp

CPU temp = atof(str temp)/1000.0; // convert to Celsius degrees
printf ("CPU" s temperature : % 2f \n”, CPU temp) ;

ledPosition(1cdhd, 0, 0) ; // set the LCD cursor position to (0,0)
ledPrintf (1cedhd, “CPU:%. 21C”, CPU_temp) ; // Display CPU temperature on LCD

fclose (fp) ;

void printDataTime() {//used to print system time

time t rawtime;

struct tm *timeinfo;

time (&rawtime) ;// get system time

timeinfo = localtime (&rawtime);// convert to local time
printf("%s \n”, asctime (timeinfo)) ;

ledPosition(ledhd, 0, 1) ;// set the LCD cursor position to (0, 1)

ledPrintf (ledhd, “Time:%d:%d:%d”, timeinfo—>tm hour, timeinfo—>tm min, timeinfo—>tm sec);

//Display system time on LCD

}

int main(void) {

int 1i;

if (wiringPiSetup() == —1){ //when initialize wiring failed, print message to screen
printf(“setup wiringPi failed !”);
return |;

}

pcf8574Setup (BASE, pcf8574 address);// initialize PCF8574

for (i=0;i<8; i++) {

pinMode (BASE+i, OUTPUT) ; // set PCF8574 port to output mode
}
digitalWrite (LED, HIGH) ; // turn on LCD backlight
digitalWrite (RW, LOW) ; // allow writing to LCD

ledhd = ledInit (2, 16, 4, RS, EN, D4, D5, D6, D7, 0, 0, 0, 0) ;// initialize LCD and return “handle”
used to handle LCD

if(lcdhd == -1){
printf(“ledinit failed !”);
return |;
}
while (1) {
printCPUTemperature () ;// print CPU temperature
printDataTime () ; // print system time

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 20 LCD1602

delay (1000);
}

return 0;

}

It can be seen from the code that PCF8591 and PCF8574 have a lot of similarities, they are through the 12C
interface to expand the GPIO RPI. First defines the 12C address of the PCF8574 and the Extension of the GPIO
pin, which is connected to the GPIO pin of the LCD1602.

//#define pcf8574 address 0x27 // default 12C address of Pcf8574

#tdefine pcf8574 address 0x3F // default 12C address of Pcf8574A

#tdefine BASE 64 // BASE is not less than 64

//////// Define the output pins of the PCF8574, which are directly connected to the
LCD1602 pin.

ftdefine RS BASE+0

ftdefine RW BASE+1

ftdefine EN BASE+2

ftdefine LED BASE+3

ftdefine D4 BASE+4

ftdefine D5 BASE+5

ftdefine D6 BASE+6

ftdefine D7 BASE+7

Then, in main function, initialize the PCF8574, set all the pins to output mode, and turn on the LCD1602
backlight.

pcf8574Setup (BASE, pcf8574 address) ;// initialize PCF8574
for (i=0;i<8;i++) {
pinMode (BASE+i, OUTPUT) ; // set PCF8574 port to output mode
}
digitalWrite (LED, HIGH) ; // turn on LCD backlight
Then use IcdInit() to initialize LCD1602 and set the RW pin of LCD1602 to 0 (namely, can be write ) according
to requirements of this function. The return value of the function called "Handle" is used to handle LCD1602"

lcdhd = ledInit (2, 16, 4, RS, EN, D4, D5, D6, D7, 0, 0,0,0) ;// initialize LCD and return
“handle” used to handle LCD
Details about lcdInit():

>
]
x
I

This is the main initialization function and must be called before you use any other LCD functions.

Rows and cols are the rows and columns on the display (e.g. 2, 16 or 4,20). Bits is the number of bits wide
on the interface (4 or 8). The rs and strb represent the pin numbers of the displays RS pin and Strobe (E)
pin. The parameters d0 through d7 are the pin numbers of the 8 data pins connected from the Pi to the
display. Only the first 4 are used if you are running the display in 4-bit mode.

The return value is the ‘handle’ to be used for all subsequent calls to the lcd library when dealing with that
LCD, or -1 to indicate a fault. (Usually incorrect parameters)

For more details about LCD Library, please refer to: https://projects.drogon.net/raspberry-pi/wiringpi/lcd-

library/

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/

yAksl Chapter 20 LCD1602 www.freenove.com [l

In the next “while”, two subfunctions are called to display the CPU temperature and the time. First look at
subfunction  printCPUTemperature(). The  CPU  temperature data is stored in  the
“/sys/class/thermal /thermal zoneO/temp " file. We need read contents of the file, and converts it to
temperature value stored in variable CPU_temp, and use lcdPrintf() to display it on LCD.

void printCPUTemperature () {//subfunction used to print CPU temperature

FILE sfp;

char str_temp[15];

float CPU_temp;

// CPU temperature data is stored in this directory.
fp=fopen(”/sys/class/thermal/thermal zone0O/temp”, "r”);
fgets(str_temp, 15, fp) ; // read file temp

CPU_temp = atof (str_temp)/1000.0; // convert to Celsius degrees

printf ("CPU" s temperature : % 2f \n”, CPU_temp) ;

lcdPosition (1edhd, 0, 0) ; // set the LCD cursor position to (0, 0)
ledPrintf (1edhd, “CPU:%. 2C”, CPU_temp) ;// Display CPU temperature on LCD
fclose (fp) ;

}

Details about IcdPosition() and IcdPrintf():

Set the position of the cursor for subsequent text entry.

These output a single ASCII character, a string or a formatted string using the usual printf formatting
commands.

Next is subfunction printDataTime() used to print system time. First, got the standard time and store it into
variable rawtime, and then converted it to the local time and tore it into timeinfo, and finally display the time
information on LCD1602.

void printDataTime () {//used to print system time

time t rawtime;

struct tm *timeinfo;

time (&rawtime) ;// get system time

timeinfo = localtime (&rawtime);// convert to local time

printf ("%s \n”, asctime (timeinfo)) ;

ledPosition(ledhd, 0, 1) ;// set the LCD cursor position to (0, 1)

lcdPrintf (1cdhd, “Time:%d:%d:%d”, timeinfo—>tm_hour, timeinfo—>tm min, timeinfo—>tm sec) ;
//Display system time on LCD

}

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 20 LCD1602

Python Code 20.1.1 12CLCD1602
First observe the project result, and then analyze the code.
1. Use cd command to enter 20.1.1_ 12CLCD1602 directory of Python code.

2. Use python command to execute python code “I2CLCD1602.py".

After the program is executed, LCD1602 screen will display current CPU temperature and system time. If there
is no display or the display is not clear, adjust potentiometer of PCF8574 module to adjust the contrast of
LCD1602 until the screen can display clearly.
The following is the program code:

from PCF8574 import PCF8574 GPIO

from Adafruit LCD1602 import Adafruit CharLCD

from time import sleep, strftime

from datetime import datetime

def get cpu tempQ): # get CPU temperature and store it into file
”/sys/class/thermal/thermal zone0O/temp”

tmp = open(’ /sys/class/thermal/thermal zone0/temp’)
tmp. read ()

cpu
tmp. close ()
return ' {:.2f} . format ( float(cpu)/1000 ) +  (’

def get time now(): # get system time
return datetime.now(). strftime(’ %H : %M : %S’ )
def loop():
mep. output (3, 1) # turn on LCD backlight
led. begin (16, 2) # set number of LCD lines and columns
while(True) :

#tlcd. clear ()

lcd. setCursor(0,0) # set cursor position

lcd. message( "CPU: ~ + get cpu temp(Q+ \n" )# display CPU temperature
lcd. message( get time now() )  # display the time

sleep (1)

def destroyQ:
lcd. clear ()

PCF8574 address = 0x27 # 12C address of the PCF8574 chip.
PCF8574A address = 0x3F # I2C address of the PCF8574A chip.
# Create PCF8574 GPIO adapter.
try:

mcp = PCF8574 GPIO(PCF8574 address)

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

220

Chapter 20 LCD1602 www.freenove.com [l

except:
try:
mep = PCF8574 GPI0O(PCF8574A address)
except:
print (" 12C Address Error !7)
exit (1)
# Create LCD, passing in MCP GPIO adapter.
led = Adafruit CharLCD(pin rs=0, pin e=2, pins db=[4,5, 6, 7], GPI10=mcp)
if name == main :
print (' Program is starting ... )
try:
Loop ()
except KeyboardInterrupt:
destroy ()

Two modules are used in the code, PCF8574.py and Adafruit_LCD1602.py. These two documents and the
code file are stored in the same directory, and neither of them is dispensable. Please do not delete. PCF8574.py
is used to provide 12C communication mode and operation method of some port for RPi and PCF8574 chip.
Adafruit module Adafruit_LCD1602.py is used to provide some function operation method for LCD1602.

In the code, first get the object used to operate PCF8574 port, then get the object used to operate LCD1602.

address = 0x27 # I2C address of the PCEF8574 chip.
# Create PCF8574 GPIO adapter.

mep = PCF8574 GPIO(address)

# Create LCD, passing in MCP GPIO adapter.

led = Adafruit CharLCD(pin rs=0, pin e=2, pins_db=[4,5, 6, 7], GPI10=mcp)
According to the circuit connection, port 3 of PCF8574 is connected to positive pole of LCD1602 backlight.
Then in the loop () function, use of mcp.output(3,1) to turn on LCD1602 backlight, and set number of LCD
lines and columns.

def loop():
mep. output (3, 1) # turn on the LCD backlight
lcd. begin (16, 2) # set number of LCD lines and columns

In the next while cycle, set the cursor position, and display the CPU temperature and time.

while(True) :
#tlcd. clear ()
lcd. setCursor(0,0) # set cursor position
lcd. message( " CPU: * + get cpu temp()+ \n' )# display CPU temperature
lcd. message ( get time now() ) # display the time

sleep (1)
CPU temperature is stored in file “/sys/class/thermal/thermal zoneO/temp” . Open the file and

read content of the file, and then convert it to Celsius degrees and return. Subfunction used to

get CPU temperature is shown below:

def get cpu temp(): # get CPU temperature and store it into file
“/sys/class/thermal/thermal zone(O/temp”

tmp = open(’ /sys/class/thermal/thermal zone0/temp’)

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

. www.freenove.com Chapter 20 LCD1602

cpu = tmp. read()

tmp. close ()

return ~ {:.2f} . format( float(cpu)/1000 ) +  (
Subfunction used to get time:

def get time now(): # get the time

return datetime.now().strftime( %H : %M: %S’ )

Details about PCF8574.py and Adafruit_LCD1602.py:

This module provides two classes PCF8574_12C and PCF8574_GPIO.
Class PCF8574_12C: provides reading and writing method for PCF8574.
Class PCF8574_GPIO: provides a standardized set of GPIO functions.
More information can be viewed through opening PCF8574.py.
Adafruit_LCD1602 Module

This module provides the basic operation method of LCD1602, including class Adafruit_CharLCD. Some
member functions are described as follows:

def begin(self, cols, lines): set the number of lines and columns of the screen.

def clear(self): clear the screen

def setCursor(self, col, row): set the cursor position

def message(self, text): display contents

More information can be viewed through opening Adafruit_CharLCD.py.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

vy Chapter 21 Hygrothermograph DHT11 www.freenove.com [l

Chapter 21 Hygrothermograph DHT11

In this chapter, we will learn a commonly used sensor, Hygrothermograph DHT11.

Project 21.1 Hygrothermograph

Hygrothermograph is an important tool in our life to remind us of keeping warm and replenishing moisture
in time. In this project, we will use RPi to read temperature and humidity data of DHT11.

Component List

Raspberry Pi 3B x1 DHT11 x1 Resistor 10kQ x1
GPIO Expansion Board & Wire x1
BreadBoard x1

Jumper

—a. R A 4 44

Component knowledge

Temperature & Humidity Sensor DHT11 is a compound temperature & humidity sensor, and the output digital
signal has been calibrated inside.

VCC CnMnw»
SDA

NC

GND

koo b

1234 DHT11

It has 1S's initialization time after powered up. The operating voltage is within the range of 3.3V-5.5V.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

™
AN
N

Chapter 21 Hygrothermograph DHT11

B www .freenove.com

Circuit

Schematic diagram

8
10
.
16
18
22
2.
26
28
32
36
38
40

3.3V

5V

3.3V

TXDO
RXDO
GPIO18
GPIO23
GPI1024
GPIO25
CEO
CE1
SCLO
GPIO12
GPIO16
GP1020
GP1021

SDA1
SCL1
GPIO4
GPIO17
GPI1027

GPIO Extension Shield

GND

11

DHT11

Hardware connection

® 8 e s e e e e e

coo mJllljow o s s e s s 00 s s 0

ANO*

FEEEERERREREEEEREEREEEEEREEEEEREREREEEED

pIa1Ys uoisualx3 Old9 Id Auiaqdsey

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

The code is used to read the temperature and humidity data of DHT11, and print them out.

First observe the project result, and then analyze the code.
1. Use cd command to enter 21.1.1_DHT11 directory of C code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/21.1.1_DHT11
2. Code of this project contains a custom header file. Use the following command to compile the code
DHT11.cpp and DHT.cpp and generate executable file DHT11. And the custom header file will be compiled
at the same time
gcc DHT.cpp DHT11.cpp —o DHT11 —IwiringPi
3. Run the generated file "DHT11".
sudo ./DHT11
After the program is executed, the terminal window will display the current total number of reading times, the
read state, as well as the temperature and humidity value. As is shown below:

The su
DHT11, . .
Humidity 1s 57 % Temperature 15

Temperature
The sum
DHT11, _
Humidity 1s 57 § Temperature

The su

Temperature

The following is the program code:

1 #include <wiringPi.h>

2 #include <stdio.h>

3 #include <stdint.h>

4 #include ”DHT. hpp”

5

6 #tdefine DHT11 Pin O //define the pin of sensor

7

8 int main() {

9 DHT dht; //create a DHT class object

10 int chk, sumCnt;//chk:read the return value of sensor; sumCnt:times of reading sensor
11 if (wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen
12 printf( );

13 return |;

14 }

15 while (1) {



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 21 Hygrothermograph DHT11

chk = dht. readDHT11(DHT11 Pin); //read DHT11 and get a return value. Then
determine whether data read is normal according to the return value.

sumCnt++; //counting number of reading times

printf ("The sumCnt is : %d \n”, sumCnt) ;

switch (chk) {

case DHTLIB OK: //if the return value is DHTLIB OK, the data is normal.
printf ("DHT11, OK! \n”);
break;

case DHTLIB ERROR CHECKSUM: //data check has errors
printf ("DHTLIB ERROR CHECKSUM! \n”);
break;

case DHTLIB _ERROR_TIMEOUT: //reading DHT times out
printf ("DHTLIB ERROR TIMEOUT! \n”);
break;

case DHTLIB INVALID VALUE: //other errors
printf ("DHTLIB INVALID VALUE! \n”);
break;

}
printf ("Humidity is %. 2f %%, \t Temperature is %. 2f
#C\n\n”, dht. humidity, dht. temperature) ;
delay (1000) ;
}
return |;
}

In this project code, we use a custom library file "DHT.hpp". It is located in the same directory with program

files "DHT11.cpp” and "DHT.cpp"”, and methods for reading DHT sensor are provided in the library file. By
using this library, we can easily read the DHT sensor. First create a DHT class object in the code.
[ ourdng;
And then in the "while" cycle, use chk = dht.readDHT11 (DHT11_Pin) to read the DHT11, and determine
whether the data read is normal according to the return value "chk". And then use variable sumCnt to record
number of reading times.

while (1) {

chk = dht.readDHT11(DHT11 Pin); //read DHT11 and get a return value. Then

determine whether data read is normal according to the return value.

sumCnt++; //count number of times of reading
printf ("The sumCnt is : %d \n”, sumCnt) ;
switch (chk) {

case DHTLIB OK: //if the return value is DHTLIB OK, the data is normal.
printf ("DHT1L, OK! \n”);
break;
case DHTLIB ERROR_CHECKSUM: //data check has errors
printf ("DHTLIB_ERROR_CHECKSUM! \n”);
break;
case DHTLIB_ERROR_TIMEOUT: //reading DHT times out

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

il Chapter 21 Hygrothermograph DHT11 www.freenove.com [l

printf ("DHTLIB_ERROR_TIMEOUT! \n”);

break;

case DHTLIB_INVALID VALUE: //other errors
printf ("DHTLIB INVALID VALUE! \n”);
break;

}
Finally print the results:
- printf ("Humidity is % 2f %%, \t Temperature is %. 2f *C\n\n”, dht. humidity, dht. temperature) ; ‘
Library file "DHT.hpp" contains a DHT class and his public member functions int readDHT11 (int pin) is used
to read sensor DHT11 and store the temperature and humidity data read to member variables double
humidity and temperature. The implementation method of the function is included in the file "DHT.cpp”.

#tinclude <wiringPi.h>
#include <stdio.h>
#include <stdint.h>

////read return flag of sensor
#define DHTLIB OK 0
#define DHTLIB ERROR CHECKSUM -1
#define DHTLIB ERROR TIMEOUT -2
#define DHTLIB INVALID VALUE -999

#tdefine DHTLIB_DHT11_WAKEUP 18
#tdefine DHTLIB_DHT WAKEUP 1

#tdefine DHTLIB_TIMEOUT 100

class DHT{
public:
double humidity, temperature; //use to store temperature and humidity data read
int readDHT11 (int pin); //read DHT11
private:
int bits[5]; //Buffer to receiver data

int readSensor(int pin, int wakeupDelay) ; //

}

Python Code 21.1.1 DHT11
First observe the project result, and then analyze the code.
1. Use cd command to enter 21.1.1_DHT11 directory of Python code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/21.1.1_DHT11
2. Use python command to execute code "DHT11.py".
python DHT11.py
After the program is executed, the terminal window will display the current total number of read, the read
state, as well as the temperature and humidity value. As is shown below:

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

The following is the program code:

1 import RPi.GPIO as GPIO

2 import time

3 import Freenove DHT as DHT

4 DHTPin = 11 #tdefine the pin of DHTI11

5

6 def loop():

7 dht = DHT. DHT (DHTPin) ficreate a DHT class object

8 sumCnt = 0 #number of reading times

9 while(True) :

10 sumCnt += 1 #counting number of reading times

11 chk = dht. readDHT11() ftiread DHT11 and get a return value. Then determine
12 whether data read is normal according to the return value.

13 print (“The sumCnt is : %d, \t chk  %d”% (sumCnt, chk))

14 if (chk is dht.DHTLIB OK): #tiread DHT11 and get a return value. Then
15 determine whether data read is normal according to the return value.

16 print ("DHTL1, 0K!”)

17 elif(chk is dht.DHTLIB ERROR CHECKSUM) : #data check has errors

18 print ("DHTLIB ERROR CHECKSUM!!”)

19 elif(chk is dht.DHTLIB ERROR TIMEOUT): #reading DHT times out

20 print ("DHTLIB ERROR TIMEOUT!”)

21 else: #other errors

22 print ("Other error!”)

23

24 print ("Humidity : % 2f, \t Temperature : % 2f \n"%(dht. humidity, dht. temperature))
25 time. sleep(2)

26

27 if name == main

28 print ( Program is starting ... )

29 try:

30 Loop()



http://www.freenove.com/
mailto:support@freenove.com

sl Chapter 21 Hygrothermograph DHT11 www.freenove.com [l

31 except KeyboardInterrupt:
32 GPI0. cleanup ()
33 exit()

In this project code, we use a module "Freenove_DHT.py", which provide method of reading sensor DHT. It
is located in the same directory with program files "DHT11.py". By using this library, we can easily read the
DHT sensor. First create a DHT class object in the code.

| | dht = DHT.DHT(DHTPin)  #create a DHT class object

And then in the "while" cycle, use chk = dhtreadDHT11 (DHT11Pin) to read the DHT11, and determine
whether the data read is normal according to the return value "chk”. And then use variable sumCnt to record

number of reading times.

while (True) :

sumCnt += 1 #counting number of reading times

chk = dht. readDHT11 (DHTPin) ttread DHT11 and get a return value. Then
determine whether data read is normal according to the return value

print (“The sumCnt is : %d, \t chk © %d”% (sumCnt, chk))

if (chk is dht.DHTLIB OK) : #read DHT11 and get a return value. Then

determine whether data read is normal according to the return value
print ("DHT11, OK!”)
elif(chk is dht.DHTLIB ERROR CHECKSUM) : #data check has errors
print ("DHTLIB ERROR CHECKSUM!!”)
elif(chk is dht.DHTLIB_ERROR TIMEOUT): #reading DHT times out
print ("DHTLIB ERROR TIMEOUT!™)
else: #other errors

print ("Other error!”)

Finally print the results:

‘ ‘ print ("Humidity : % 2f, \t Temperature : % 2f \n"%(dht. humidity, dht. temperature))

Module "Freenove_DHT.py" contains a DHT class. And class functions def readDHT11 (pin) is used to read
sensor DHT11 and store the temperature and humidity data read to member variables humidity and
temperature.

This is a Python module for reading the temperature and humidity data of the DHT sensor. Partial

functions and variables are described as follows:

Variable humidity: store humidity data read from sensor

Variable temperature: store temperature data read from sensor

def (pin): read the temperature and humidity of sensor DHT11, and return values used to

determine whether the data is normal.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 22 Matrix Keypad

Chapter 22 Matrix Keypad

We have learned usage of a single button before. In this chapter, we will learn a device which integrates a

number of key, matrix keyboard.

Project 22.1 Matrix Keypad

In this project, we will try to get every key code on the Keypad work.

Component List

Raspberry Pi 3B x1 4x4 Matrix Keypad x1

GPIO Expansion Board & Wire x1

BreadBoard x1
[ 2] B](A]
4] (5] (6] B]

[7][8][9](C]
] [0] [#] D]

Jumper

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

230

Chapter 22 Matrix Keypad www.freenove.com [l

Component knowledge

4x4 Matrix Keypad
Keypad is a device that integrates a number of keys. As is shown below, a 4x4 Keypad integrates 16 keys:

4x4 Keypad

af 3 2 1]

[ 2131 [A)
[4](5][6] B

[l 88l [C]
/[0 # Dl

[ [or [~ oo

8 1

Like the integration of LED matrix, in 4x4 Keypad each row of keys is connected in with one pin and it is the
same as each column. Such connection can reduce the occupation of processor port. Internal circuit is shown

below.
e 2_-_ 3_-_ A_-_
4 3 6 B
) —Q_-_Q—| ) ;_c_-_o_l ) ho_-_o_‘l ) _o_-_o_l .
7 8 9 C
"—°_-_°—| "—°_-_°—_| "—°_-_°—_[ "—°_-_°—1 )
-—i 0—| »—i 0—1 -— 0—1 — O—l 5

The usage method is similar to the Matrix LED, namely, uses a row scan or column scanning method to detect
the state of key on each column or row. Take column scanning method as an example, send low level to the
first 1 column (Pinl), detect level state of row 5, 6, 7, 8 to judge whether the key A, B, C, D are pressed. And
then send low level to column 2, 3, 4 in turn to detect whether other keys are pressed. Then, you can get the
state of all keys.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 22 Matrix Keypad

Circuit

Schematic diagram

3.3V 5V
—31SDA1 TXDO |8~
—21scL1 RXDO 10 dxd Keypad
—LAGPIO4 GPI018}12 ST
GPIOTT |GPIO17 GPI023}-16 AT
G027 |GPI027 GP1024 )18 ST 11
P02 (GPI022 GPI1025 |22 ST
VOS] MOSI CEO 24—
21IMmiso CE1 felem
231SCLK SCLO M8
2L1SDAD GPI012}32.
291GPI05 GPI016}36
211GPI06 GP1020}-38
-231GPI013 GP1021}49
%-GPlOﬂJ
GP1026 Raspberry Pi
GPIO Extension Shield
GND

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Ry Chapter 22 Matrix Keypad www.freenove.com [l

Hardware connection

2](3](A
5](6]B]

8](9](C]
[0] [#] D]

- . oo e e oo e e oo e e e e e e
= © ¢ e®eeee s eese eeees eesee
- E

- B4

=

- pe . @ e e e 00000 e 0 e s e e e e e e e e e e
=N o .o ® e e 09 e e 00 e e e e e e e e e e e e
- o e e 9 90 00 e e e e e RS E e e eSO
- < o -

- B Ss LR IR T I T T IR T I B I BRI I R
= I.I’j e LRI T T I T T I I T T B T I BB I B R B
- (AL

= O o

- B e

= O Sa . e 000 s e 00 v "o e
=y - a = . s o0 000 e e s e e e e e e
— o (LaL]

- = ®e . s e 000 "o 000 e e e
- = L . e e o 0 0 e e e 0 0 0 0 o e 00
- g e . D I "o e 00 LI
- -3

- 7]

- 3]

= . * e 0 0 e 0 0 * e 0 0 "0 0 0.
= . e 0 0 ® e 0 0 * e 0 0 * e e 0

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

This code is used to obtain all key code of 4x4 Matrix Keypad, when one of keys is pressed, the key code will
be printed out in the terminal window.

First observe the project result, and then analyze the code.
1. Use cd command to enter 22.1.1_MatrixKeypad directory of C code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/22.1.1_MatrixKeypad
2. Code of this project contains a custom header file. Use the following command to compile the code
MatrixKeypad.cpp, Keypad.cpp and Key.cpp generate executable file MatrixKeypad. And the custom
header file will be compiled at the same time.
gcc MatrixKeypad.cpp Keypad.cpp Key.cpp —o MatrixKeypad —lwiringPi
3. Run the generated file "MatrixKeypad".
sudo ./MatrixKeypad
After the program is executed, press any key on the MatrixKeypad, the terminal will print out the
corresponding key code. As is shown below:
Program 1s
You

1
4

[

=

o

The following is the program code:

1 #include “Keypad. hpp”

2 #include <stdio.h>

3 const byte ROWS = 4; //four rows

4 const byte COLS = 4; //four columns

5 char keys[ROWS][COLS] = { //key code

6 {1, 2,3, 0%,

7 rr,5,76, 81,

8 {7,’8,’9,’C}l,

9 {70, #,' D}

10 | };

11 byte rowPins[ROWS] = {I, 4, 5, 6 }; //connect to the row pinouts of the keypad
12 byte colPins[COLS] = {12,3, 2, }; //connect to the column pinouts of the keypad
13 //create Keypad object



http://www.freenove.com/
mailto:support@freenove.com

234

Chapter 22 Matrix Keypad www.freenove.com [l

Keypad keypad = Keypad( makeKeymap (keys), rowPins, colPins, ROWS, COLS );

int main() {

printf ("Program is starting ... \n”);

if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen
printf("setup wiringPi failed !7);
return |;

}

char key = 0;

keypad. setDebounceTime (50) ;

while (1) {
key = keypad. getKey(); //get the state of keys

if (key) { //if a key is pressed, print out its key code
printf("You Pressed key : %c \n”, key) ;
}
}
return |;

}
In this project code, we use two custom library file "Keypad.hpp" and "Key.hpp". They are located in the same
directory with program files "MatrixKeypad.cpp", "Keypad.cpp" and "Key.cpp". Library Keypad is transplanted
from the Arduino library Keypad. And this library file provides a method to read the keyboard. By using this

library, we can easily read the matrix keyboard.

First, define the information of the matrix keyboard used in this project: the number of rows and columns,
code of each key and GPIO pin connected to each column and each row. It is necessary to include the header
file "Keypad.hpp".

tinclude “Keypad. hpp”
#include <stdio.h>
const byte ROWS
const byte COLS = 4; //four columns
char keys[ROWS][COLS] = { //key code
{1,023, 0,

4; //four rows

{’4’,’5’,’6’,’]3’},
{573’38’,J9y’yci},
{5*3’30’,5#3’3D’}

b

byte rowPins[ROWS]

byte colPins[COLS]
And then, based on the above information, instantiate a Keypad class object to operate the matrix keyboard.
- Keypad keypad = Keypad( makeKeymap (keys), rowPins, colPins, ROWS, COLS );: ‘
Set the debounce time to 50ms, and this value can be set based on the actual use of the keyboard flexibly,
with default time 10ms.
- keypad. setDebounceTime (50) ; ‘
In the "while" cycle, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key
pressed, its key code will be stored in the variable "key", then be printed out.

{1, 4, 5, 6 }; //connect to the row pinouts of the keypad
{12,3, 2, 0}; //connect to the column pinouts of the keypad

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 22 Matrix Keypad

while (1) {
key = keypad. getKey(); //get the state of keys
if (key) { // if a key is pressed, print out its key code

printf("You Pressed key : %c \n”, key):

The library Keypad used for RPi is transplanted from the Arduino library Keypad. And the source files can be
obtained by visiting http://playground.arduino.cc/Code/Keypad. As for transplanted function library, the
function and method of all classes, functions, variables, etc. are the same as the original library. Partial contents
of the Keypad library are described below:

Keypad (char *userKeymap, byte *row, byte *col, byte numRows, byte numCols) ;

Constructor, the parameters are: key code of keyboard, row pin, column pin, the number of rows, the
number of columns.

char getKey();

Get the key code of the pressed key. If no key is pressed, the return value is NULL.
void setDebounceTime (uint) ;

Set the debounce time. And the default time is 10ms.

void setHoldTime (uint) ;

Set the time when the key holds stable state after pressed.

bool isPressed(char keyChar) ;

Judge wether the key with code "keyChar" is pressed.

char waitForKey();

Wait for a key to be pressed, and return key code of the pressed key.

KeyState getState();

Get state of the keys.

bool keyStateChanged() ;

Judge whether there is a change of key state, then return True or False.

For More information about Keypad, please visit: http://playground.arduino.cc/Code/Keypad or through the
opening file "Keypad.hpp".

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com
http://playground.arduino.cc/Code/Keypad
http://playground.arduino.cc/Code/Keypad

First observe the project result, and then analyze the code.
1. Use cd command to enter 22.1.1_MatrixKeypad directory of Python code.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/22.1.1_MatrixKeypad
2. Use python command to execute code "MatrixKeypad.py".
python MatrixKeypad.py
After the program is executed, press any key on the MatrixKeypad, the terminal will print out the
corresponding key code. As is shown below:

=] O LN s ) b)) =0

7% W00

- '-H-_ [

Fu
F.
I:.
I:u
I:u
Fu
Fu
Fu
Fu
Fu
F.
I:.
I:u
I:u
Fu

The following is the program code:

1 import RPi.GPIO as GPIO

2 import Keypad #import module Keypad

3 ROWS = 4 # number of rows of the Keypad

4 COLS = 4 #tnumber of columns of the Keypad

5 keys = [ ’,’2,°3,'A, ttkey code

6 ', 5, 6, B,

7 7,°8,’9,°C,

8 K00, #,D 1

9 rowsPins = [12, 16, 18, 22] #connect to the row pinouts of the keypad

10 colsPins = [19, 15, 13, 11] #ticonnect to the column pinouts of the keypad
11

12 def loop():

13 keypad = Keypad. Keypad (keys, rowsPins, colsPins, ROWS, COLS) ttcreat Keypad object
14 keypad. setDebounceTime (50) #tset the debounce time

15 while (True) :

16 key = keypad. getKey () tobtain the state of keys

17 if (key != keypad. NULL) : #if there is key pressed, print its key code
18 print ("You Pressed Key : %c "%(key))

19

20 if name == main : #Program start from here

21 print ("Program is starting ... ”)

22 try:



http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 22 Matrix Keypad

23 loop ()
24 except KeyboardInterrupt: #When 'Ctrl+C is pressed, exit the program.
25 GPI0. cleanup ()

In this project code, we use two custom module "Keypad.py", which is located in the same directory with
program file "MatrixKeypad.py". And this library file, which is transplanted from Arduino function library
Keypad, provides a method to read the keyboard. By using this library, we can easily read the matrix keyboard.
First, import module Keypad. Then define the information of the matrix keyboard used in this project: the
number of rows and columns, code of each key and GPIO pin connected to each column and each row.

import Keypad #import module Keypad

ROWS = 4 #tnumber of rows of the Keypad
COLS = 4 #number of columns of the Keypad
keys = [ 17,72,73,A, ttkey code

P R NS B I )
4, 5, 6, B,

Y Y YA YA Y
7,78,°9, C),

7*),)07,7#)’71—)7 ]
rowsPins = [12, 16, 18, 22] f#iconnect to the row pinouts of the keypad
colsPins = [19, 15, 13, 11] ficonnect to the column pinouts of the keypad

And then, based on the above information, instantiate a Keypad class object to operate the matrix keyboard.
‘ ‘ keypad = Keypad. Keypad (keys, rowsPins, colsPins, ROWS, COLS)
Set the debounce time to 50ms, and this value can be set based on the actual use of the keyboard flexibly,

with default time 10ms.

‘ ‘ keypad. setDebounceTime (50) ‘
In the "while" cycle, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key
pressed, its key code will be stored in the variable "key", and then be printed out.

while (True) :
key = keypad. getKey () figet the state of keys
if(key != keypad.NULL) : # if a key is pressed, print out its key code
print ("You Pressed Key : %c “%(key))

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

PRI Chapter 22 Matrix Keypad www.freenove.com [l

The library Keypad used for RPi is transplanted from the Arduino library Keypad. The source files is written by
language C++ and translated to Python can be obtained by visiting
http://playground.arduino.cc/Code/Keypad. As for transplanted function library, the function and method of

all classes, functions, variables, etc. are the same as the original library. Partial contents of the Keypad library
are described below:

def init_ (self, usrKeyMap, row Pins, col Pins, num Rows, num Cols) :

Constructed function, the parameters are: key code of keyboard, row pin, column pin, the number of rows,
the number of columns.

def getKey (self):

Get a pressed key. If no key is pressed, the return value is keypad NULL.
def setDebounceTime (self, ms) :

Set the debounce time. And the default time is 10ms.

def setHoldTime (self,ms):

Set the time when the key holds stable state after pressed.

def isPressed (keyChar) :

Judge wether the key with code "keyChar" is pressed.

def waitForKey () :

Wait for a key to be pressed, and return key code of the pressed key.
def getState():

Get state of the keys.

def keyStateChanged() :

Judge whether there is a change of key state, then return True or False.

For More information about Keypad, please visit: http://playground.arduino.cc/Code/Keypad or through the
opening file "Keypad.py".

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com
http://playground.arduino.cc/Code/Keypad
http://playground.arduino.cc/Code/Keypad

B www freenove.com Chapter 23 Ultrasonic Ranging

Chapter 23 Ultrasonic Ranging

In this chapter, we learn a module which use ultrasonic to measure distance, HC SRO4.

Project 23.1 Ultrasonic Ranging

In this project, we use ultrasonic ranging module to measure distance, and print out the data in the terminal.

Component List

Raspberry Pi 3B x1 HC SR501 x1
GPIO Expansion Board & Wire x1
BreadBoard x1

Jumper

—a. R A 4 44

HC-SR04

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

PZIOl Chapter 23 Ultrasonic Ranging www.freenove.com [l

Component Knowledge

Ultrasonic ranging module use the principle that ultrasonic will reflect when it encounters obstacles. Start
counting the time when ultrasonic is transmitted. And when ultrasonic encounters an obstacle, it will reflect
back. The counting will end after ultrasonic is received, and the time difference is the total time of ultrasonic
from transmitting to receiving. Because the speed of sound in air is constant, and is about v=340m/s. So we
can calculate the distance between the model and the obstacle: s=vt/2.

RIC (€ CCC(
1)) ) ) ) ))

|« S >| 2S=Vit.

Ultrasonic module integrates a transmitter and a receiver. The transmitter is used to convert electrical signals
(electrical energy) into sound waves (mechanical energy) and the function of the receiver is opposite. The

object picture and the diagram of HC SR04 ultrasonic module are shown below:
HC-SR04

i ))))E
e a((((

HC-SR04

e b

Pin description:

VCC power supply pin
Trig trigger pin

Echo Echo pin

GND GND

Technical specs:

Working voltage: 5V

Working current: 12mA

Minimum measured distance: 2cm

Maximum measured distance: 200cm

Size: 45mm#*20mm=*15mm

Instructions for use: output a high-level pulse in Trig pin lasting for least 10uS. Then the module begins to
transmit ultrasonic. At the same time, the Echo pin will be pulled up. When the module receives the returned
ultrasonic, the Echo pin will be pulled down. The duration of high level in Echo pin is the total time of the
ultrasonic from transmitting to receiving, s=vt/2.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

—
<
N

Chapter 23 Ultrasonic Ranging

B www .freenove.com

Circuit

Note that the voltage of ultrasonic module is 5V in the circuit.

Schematic diagram

HC-SR04

8

0]

2

16

18
22
24
26
28
32
36
38
40

TXDO
RXDO
GPIO18
GPI1023

5V

5V

3.3V
026 Raspberry Pi

GPIO Extension Shield

GND

Hardware connection

HC-SR04

LI *® 0 00 o 0 0 0 (]
LI o 0 00 ® o 0 0 0 e
L) LRI ) ® o 0 0 0 L]
. o 0 00 ® o 0 0 0 (I
LI o 0 00 o 0 0 0 (]
LRI ) e o 0 0 0
LI o 0 00 ® s 0 0 0 U]
e e LRI ® o 0 00 L]
e * e 0 00 e 0 00 LY
e CRCI A ) * e 000 (Y
. CICR A ) *® e 0 00 ..
CICRC A ) * e 0 00
.. s 0 00 * e 0 00 ..
LY s 0 00 ® s 0 0 0 ..
LY *® s 0 0 0 * s 0 00 L)
LI ) * s 0 00 * s 0 00 (I
L) LI ) ® s 0 000 LI
s 0 00 U I )
LI LRI ) U I ) LI
LI CIC I ) LR I ) LI
LI CIC I LI I ) LI
Y LI ] ® s 0000 LI
T CIC I ) LR I ) T
----------
s 8| @ e e 88 e e e (Y
e8| e e e e e s e e (Y
e e ® e e e e s e e T
e e @ e e e e s e e (Y
e8| @ e e e e s e e (Y
lllll ® s 0 00
L) *® 0 00 ® e 0 0 0 (Y
LY *® 0 00 e 0 00 (Y
LY U ) ® e 0 0 0 (I
LI LI ) ® o 0o 0 0 (I
L) (] LI

PI21US uoisuaixg OIdD Id A1agdsey

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

First observe the project result, and then analyze the code.

1.

Use cd command to enter 23.1.1_UltrasonicRanging directory of C code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/23.1.1_UltrasonicRanging

Use following command to compile “UltrasonicRanging.c® and generate executable file
"UltrasonicRanging".

gcc UltrasonicRanging.c —o UltrasonicRanging —lwiringPi

Then run the generated file "UltrasonicRanging"”.

sudo ./UltrasonicRanging

After the program is executed, make the detector of ultrasonic ranging module aim at the plane of an object,

then the distance between the ultrasonic module and the object will be displayed in the terminal. As is shown

below:
The following is the program code:
1 #tinclude <wiringPi.h>
2 #include <stdio.h>
3 #include <sys/time.h>
4
5 fidefine trigPin 4
6 #tdefine echoPin 5
7 #tdefine MAX DISTANCE 220 // define the maximum measured distance
8 #define timeOut MAX DISTANCE*60 // calculate timeout according to the maximum measured
9 distance
10 //function pulseln: obtain pulse time of a pin
11 int pulseln(int pin, int level, int timeout);
12 float getSonar () { // get the measurement results of ultrasonic module, with unit: cm
13 long pingTime;
14 float distance;
15 digitalWrite (trigPin, HIGH) ; //trigPin send 10us high level
16 delayMicroseconds (10) ;
17 digitalWrite (trigPin, LOW) ;
18 pingTime = pulseln(echoPin, HIGH, timeOut); //read plus time of echoPin
19 distance = (float)pingTime * 340.0 / 2.0 / 10000.0; // the sound speed is 340m/s, and
20 | calculate distance
21 return distance;
22 |}



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 23 Ultrasonic Ranging

int main() {

printf ("Program is starting ... \n”);

if(wiringPiSetup() == -1) { //when initialize wiring failed, print message to screen
printf ("setup wiringPi failed !7);
return 1;

}

float distance = 0;

pinMode (trigPin, OUTPUT) ;

pinMode (echoPin, INPUT) ;

while (1) {
distance = getSonar () ;
printf ("The distance is : % 2f cm\n”, distance) ;
delay (1000) ;

}

return 1;

First, define the pins and the maximum measurement distance.
ftdefine trigPin 4
#tdefine echoPin 5
#tdefine MAX DISTANCE 220 //define the maximum measured distance

If the module does not return high level, we can not wait forever. So we need to calculate the lasting time
over maximum distance, that is, time Out. timOut= 2*MAX_DISTANCE/100/340+1000000. The constant part
behind is approximately equal to 58.8.

- ftdefine timeOut MAX DISTANCE*60

Subfunction getSonar () function is used to start the ultrasonic module for a measurement, and return the
measured distance with unit cm. In this function, first let trigPin send 10us high level to start the ultrasonic
module. Then use pulseln () to read ultrasonic module and return the duration of high level. Finally calculate
the measured distance according to the time.

float getSonar () { // get the measurement results of ultrasonic module, with unit: cm

long pingTime;

float distance;

digitalWrite (trigPin, HIGH) ; //trigPin send 10us high level

delayMicroseconds (10) ;

digitalWrite (trigPin, LOW) ;

pingTime = pulseln(echoPin, HIGH, timeOut); //read plus time of echoPin
(float)pingTime * 340.0 / 2.0 / 10000.0; // the sound speed is 340m/s, and

calculate distance

distance

return distance;

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Finally, in the while loop of main function, get the measurement distance and print it out constantly.
while (1) {

distance = getSonar () ;

printf( , distance) ;
delay (1000) ;

}
About function pulseIn():

int pulseln(int pin, int level, int timeout);

Return the length of the pulse (in microseconds) or 0 if no pulse is completed before the timeout (unsigned
long).

First observe the project result, and then analyze the code.
1. Use cd command to enter 23.1.1_UltrasonicRanging directory of Python code.

cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/23.1.1_UltrasonicRanging
2. Use python command to execute code "UltrasonicRanging.py”.

python UltrasonicRanging.py
After the program is executed, make the detector of ultrasonic ranging module aim at the plane of an object,
then the distance between the ultrasonic module and the object will be displayed in the terminal. As is shown
below:

The following is the program code:

1 import RPi.GPIO as GPIO

2 import time

3

4 trigPin = 16

5 echoPin = 18

6 MAX_DISTANCE = 220 #tdefine the maximum measured distance

7 timeOut = MAX DISTANCE#60  #icalculate timeout according to the maximum measured distance
8

9 def pulseln(pin, level, timeOut): # function pulseln: obtain pulse time of a pin
10 t0 = time. time()

11 while (GPIO. input (pin) != level):

12 if((time. time() - t0) > timeOut*0.000001) :

13 return 0;

14 t0 = time. time()

15 while (GPIO. input (pin) == level):

16 if ((time. time ) — t0) > timeOut*0.000001) :

17 return 0;



http://www.freenove.com/
mailto:support@freenove.com

B ww.freenove.com

Chapter 23 Ultrasonic Ranging

pulseTime = (time. time() — t0)%*1000000

return pulseTime

def getSonar():

GPI0. output (trigPin, GPI0. HIGH)
#10us
GPI0. output (trigPin, GPI0. LOW)
pingTime = pulseln(echoPin, GPI0. HIGH, timeOut)
distance = pingTime % 340.0 / 2.0 / 10000.0

time. sleep (0. 00001)

calculate distance

return distance

def setup():

print ( Program is starting...’)

GPI0. setmode (GPT0. BOARD)

GPIO. setup(trigPin, GPIO.OUT) #
GPI0. setup(echoPin, GPIO. IN) #

def loop():
GPIO. setup (11, GPIO. IN)
while(True) :

distance = getSonar ()

print (“The distance is

time. sleep (1)
if name == main :
setup ()
try:

Loop ()
except KeyboardInterrupt:
GPIO0. cleanup ()

figet the measurement results of ultrasonic module,with unit: cm

ftmake trigPin send 10us high level

firead plus time of echoPin

# the sound speed is 340m/s, and

#numbers GPIOs by physical location

© % 2f em”%(distance))

#tiprogram start from here

#twhen ~Ctrl+C’

#irelease resource

is pressed, the program will exit

First, define the pins and the maximum measurement distance.

trigPin = 16
echoPin = 18
MAX DISTANCE = 220

# define the maximum measured distance

If the module does not return high level, we can not wait forever. So we need to calculate the lasting time
over maximum distance, that is, time Out. timOut= 2*MAX_DISTANCE/100/340+1000000. The constant part

behind is approximately equal to 58.8.

- timeOut = MAX DISTANCE#60

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

ZIGW Chapter 23 Ultrasonic Ranging www.freenove.com [l

Subfunction getSonar () function is used to start the ultrasonic module for a measurement, and return the
measured distance with unit cm. In this function, first let trigPin send 10us high level to start the ultrasonic
module. Then use pulseln () to read ultrasonic module and return the duration of high level. Finally calculate
the measured distance according to the time.

def getSonar(): figet the measurement results of ultrasonic module, with unit: cm
GPIO. output (trigPin, GPI0. HIGH) #imake trigPin send 10us high level
time. sleep (0. 00001) #10us
GPIO. output (trigPin, GP10. LOW)
pingTime = pulseln(echoPin, GPI0. HIGH, timeOut) firead plus time of echoPin
distance = pingTime % 340.0 / 2.0 / 10000.0 # the sound speed is 340m/s, and

calculate distance

return distance

Finally, in the while loop of main function, get the measurement distance and print it out constantly.
while(True) :

distance = getSonar ()

print (“The distance is : % 2f cm”%(distance))
time. sleep (1)

About function def pulseln(pin, level, timeOut) :

Return the length of the pulse (in microseconds) or O if no pulse is completed before the timeout (unsigned
long).

B support@freenove.com



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 24 RFID

Chapter 24 RFID

In this chapter, we will learn how to use RFID.

Project 24.1 RFID

In this project, we will use RC522 RFID card reader to read and write the M1-S50 card.

Component List

Raspberry Pi 3B x1 Breadboard power module x1
GPIO Extension Board & Wire x1
BreadBoard x1
Jumper M/F x7

~
—~ n
o ¢
~—r o
— . 4444444 N e
~——"7, &
- =@
By
FREENDOVE
Mifarel S50 Standard card x1 Mifarel S50 Non-standard card x1
g N\

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

248

Chapter 24 RFID www.freenove.com [l

Component Knowledge

RFID

RFID (Radio Frequency Identification) is a wireless communication technology. A complete RFID system is
generally composed of the responder and reader. Generally, we use tags as responders, and each tag has a
unique code, which is attached to the object to identify the target object. The reader is a device for reading
(or writing) tag information.

Products derived from RFID technology can be divided into three categories: passive RFID products, active
RFID products and semi active RFID products. And Passive RFID products are the earliest, the most mature
and most widely used products in the market among others. It can be seen everywhere in our daily life such
as, the bus card, dining card, bank card, hotel access cards, etc., and all of these belong to close-range contact
recognition. The main operating frequency of Passive RFID products are: 125KHZ (low frequency), 13.56 MHZ
(high frequency), 433MHZ (ultrahigh frequency), 915MHZ (ultrahigh frequency). Active and semi active RFID
products work at higher frequencies.

The RFID module we use is a passive RFID product with the operating frequency of 13.56MHz.

MFRC522

The MFRC522 is a highly integrated reader/writer IC for contactless communication at 13.56MHz.

The MFRC522's internal transmitter is able to drive a reader/writer antenna designed to communicate with
ISO/IEC 14443 A/MIFARE cards and transponders without additional active circuitry. The receiver module
provides a robust and efficient implementation for demodulating and decoding signals from ISO/IEC 14443
A/MIFARE compatible cards and transponders. The digital module manages the complete ISO/IEC 14443A
framing and error detection (parity and CRC) functionality

This RFID Module uses MFRC522 as the control chip, and SPI (Peripheral Interface Serial) as the reserved
interface.

Technical specs:

Operating Voltage 13-26mA (DC) \3. 3V
Idle current 10-13mA (DC) \3. 3V
Sleep current in the <80uA

Peak current <30mA

Operating frequency 13. 56MHz

Mifarel S50, Mifarel S70. Mifare
Ultralight. Mifare Pro. Mifare Desfire
Size 40mmX60mm

Operation temperature | 20-80 degrees (Celsius)

Supported card type

Storage temperature 40-85 degrees (Celsius)
Operation humidity 5%-95% (Relative humidity)
Mifarel S50 Card
Mifare S50 is often called Mifare Standard with the capacity of 1K bytes. And each card has a 4-bytes global
unique identifier number (USN/UID), which can be rewritten 100 thousand times and read infinite times. Its
storage period can last for 10 years. The ordinary Mifarel S50 Card and non-standard Mifarel S50 Card
equipped for Freenove RFID Kit are shown below.

The Mifare S50 capacity (1K byte) is divided into 16 sectors (SectorO-Sector15). Each sector contains 4 data

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com Chapter 24 RFID

block (BlockO-Block3. 64 blocks of 16 sectors will be numbered according absolute address, from 0 to 63).
And each block contains 16 bytes (ByteO-Bytel5), 64x16=1024. As is shown in the following table:

Sector No. | Block No. Storage area Block type Absolute
block No.
sector 0 block 0 vendor code vendor block 0
block 1 data block 1
block 2 data block 2
block 3 | Password A-access control-password B control block 3
sector 1 block 0 data block 4
block 1 data block 5
block 2 data block 6
block 3 | Password A-access control-password B control block 7
sector 15 block 0 data block 60
block 1 data block 61
block 2 data block 62
block 3 | Password A-access control-password B control block 63

Each sector has a set of independent password and access control which are put in the last block of each
sector, and the block is also known as sector trailer, that is Block 3 in each sector. Sector 0, block 0 (namely
absolute address 0) of S50 is used to store the vendor code, which has been solidified and can’t be changed,
and the card serial number is stored here. In addition to the manufacturer and the control block, the rest of
the cards are data blocks, which can be used to store data. Data block can be used for two kinds of applications:
(1) used as general data storage and can be operated for reading and writing.
(2) used as data value, and can be operated for initializing the value, adding value, subtracting and reading
the value.
The sector trailer block in each sector is the control block, including a 6-byte password A, 4-byte access
control and 6-byte password B. For example, the control block of a brand new card is as follows:

A0 A1 A2 A3 A4 A5 FF 07 80 69 BO B1 B2 B3 B4 BS

password A access control password B

The default password of a brand new card is generally 0A1A2A3A4A5 for password A, BOB1B2B3B4B5 for
password B, or both the password A and password B are 6 FF. Access control is used to set the access
conditions for each block (including the control block itself) in a sector.

Blocks of S50 are divided into data blocks and control blocks. There are four operations, "read”, "write", "add
value", "subtract value (including transmission and storage)" for data blocks, and there are two operations,
"read" and "write" for control blocks.

For more details about how to set data blocks and control blocks, please refer to Datasheet.

By default, after verifying password A or password B, we can do reading or writing operation to data blocks.
And after verifying password A, we can do reading or writing operation to control blocks. But password A can
never be read. If you choose to verify password A and then you forget the password A, the block will never
be able to read again. It is highly recommended that beginners should not try to change the contents of
control blocks.

For Mifarel S50 card equipped for Freenove RFID Kit, the default password A and B is FFFFFFFFFFFF.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com [l

/]

-
El.
.
-
18
126

TXDO
RXDO
GPIO18
GPIO23
GP1024
GPI1025
CEO
CE1

5V

3.3V

3.3V

SDA1
SCL1
GPIO4
GPIO17
GP1027
GPI1022
MOSI

s :
>
0
ONWOWO &
A=A — T u
O0000 L% 3
Naoon 25 L
0000 g
©
wel29 W
200000 2
gooooo ¢
NnO0000O

19
2

—3.
—2
-
el
ik
A5

3.3V

RFID-RC522 Module

plelys uoisualx3 OIdo Id Ausgdsey

Chapter 24 RFID
Schematic diagram:

Circuit

EEEEEEEEREEREREREREEEEEEEE R R ERERRERED

Hardware connection:

250

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 24 RFID

Configure SPI

Enable SPI

The SPI interface raspberry pie is closed in default. You need to open it manually. You can enable the SPI
interface in the following way.

Type command in the terminal:

Then open the following dialog box:

Choose “5 Interfacing Options”>“P4 SPI">“Yes"—>“Finish” in order and restart your RPi later. Then the SPI
module is started.
Type the following command to check whether the module SPI is loaded successfully:

The following result indicates that the module SPI has been loaded successfully:

dev/spidev0.® /dev/spidev0.1l
Install Python module SPI-Py
If you use Python language to write the code, please follow the step below to install the module SPI-Py. If
you use C/C++ language, you can skip this step.
Open the terminal and type the following command to install:

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com
https://github.com/lthiery/SPI-Py.git

The project code use human-computer interaction command line mode to read and write the M1-S50 card.

First observe the running result, and then analyze the code.
1. Use cd command to enter 24.1.1_RFID directory of C code.
cd Freenove_ RFID_Starter_Kit_for_Raspberry_Pi/Code/C_Code/24.1.1_RFID
2. Use following command to compile and generate executable file "RFID".
sudo ./build.sh
3. Then run the generated file "RFID".
sudo ./RFID
After the program is executed, the following contents will be displayed in the terminal:

Build finished!
pi@raspberrypi:

oplication

Here, type the command “quit” to exit the program.

Type command "scan”, then the program begins to detect whether there is a card close to the sensing area
of MFRC522 reader. Place an M1-S50 card in the sensing area. The following results indicate that the M1-S50
card has been detected, the UID of which is EGBCF5C8EFB (HEX).



http://www.freenove.com/
mailto:support@freenove.com

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range
is 0-63. This command is used to display all the data from blockstart address to the end of the sector. For
example, sector 0 contains data block 0,1,2,3. Using the command read 0 can display all contents of data
block 0,1,2,3. Using the command read 1 can display all contents of data block 1,2,3. As is shown below:

ff ff £f £ f1

OxFF OxFF ...0K

Command dump is used to display the content of all data blocks in all sectors.
Command <address> <data> is used to write “data" to data block with address “address”. Where the address
range is 0-63 and the data length is 0-16. For example, if you want to write the string "Freenove" to the data
block with address “1”, you can type the following command.

write 1 Freenove

Read the contents of this sector and check the data just written.
read 0
The following results indicate that the string "Freenove" has been written successfully into the data block 1.

nedefgha

Command clean <address> is used remove the contents of the data block with address "address". For
example, if you want to clear the contents of the data block 1 that has just been written, you can type the
following command.

clean 1
RCS22=E6CFSC8E=clean 1
clean

Auth Block (0x01) with key OxFF OxFF OxFF OxFF OxFF ...0K
Try to clean block 1...0K



http://www.freenove.com/
mailto:support@freenove.com

Read the contents of data blocks in this sector again to test whether the data is erased. The following results

indicate that the contents of data block 1 have been erased.
RCSZ2=ESCFSC8E=read 0

The following is the program code:

1 #include <stdio.h>

2 #include <stdint.h>

3 #include <unistd.h>

4 #include <string. h>

5 #tinclude <getopt.h>

6 #tinclude <stdlib.h>

7 #include “mfrc522.h”

8 #tdefine DISP_COMMANDLINE() printf("RC522>”)
9

10 int scan loop(uint8 t *CardID) ;

11 int tag select (uint8 t *CardID) ;

12 int main(int argc, char s*argv) f{

13 MFRC522 Status t ret;

14 //Recognized card ID

15 uint8 t CardID[5] = { 0x00, };

16 static char command buffer[1024];
17

18 ret = MFRC522 Init('A’);

19 if (ret < 0) {

20 perror ( )
21 exit(-1);

22 }

23

24 printf ( );
25

26 while (1) {

27

28 DISP_ COMMANDLINE () ;

29



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 24 RFID

scanf ("%s”, command buffer) ;
if (strcmp(command buffer, “scan”) == 0) {
puts (“Scanning”) ;
while (1) {
ret = MFRC522_ Check (CardID) ;
if (ret != MI OK) {
printf (". ") ;
fflush (stdout) ;
continue;
}
ret |= tag select (CardID) ;
if (ret == MI_OK) {
ret = scan_loop (CardID) ;
if (ret < 0) {
goto END_SCAN;
} else if (ret == 1) {
goto HALT;

1
END_SCAN: printf(“Card error...”);
HALT: puts(“Halt”);

} else if (strcmp(command buffer, “quit”) == 0
|| stremp (command buffer, “exit”) == 0) {
return 0;
} else {

puts (“Unknown command”) ;
puts (“scan:scan card and dump”);
puts (“quit:exit program”);

}

/*Main Loop End*/

}

int scan_loop (uint8 t *CardID) {

while (1) {

char input[32];

int block start;

DISP_COMMANDLINE () ;

printf ("H02X%602X%02X%023> ", CardID[0], CardID[1], CardID[2], CardID[3]);
scanf ("%s”, input) ;

puts ((char*) input) ;

if (stremp(input, “halt”) == 0) {

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

Chapter 24 RFID www.freenove.com [l

return 1;
} else if (stremp(input, “dump”) == 0) {
if (MFRC522 Debug CardDump (CardID) < 0)
return —1;
} else if (stremp(input, “read”) == 0) {
scanf ("%d”, &block start);
if (MFRC522 Debug DumpSector (CardID, block start) < 0) {
return —1;
}
} else if(stremp(input, “clean”) == 0){
char c;
scanf ("%d”, &block start);
while ((¢c = getchar()) !="\n" && c != EOF)

if (MFRC522 Debug Clean (CardID, block start)) f{

return —1;

} else if (stremp(input, “write”) == 0) {

char write buffer[256];

size t len = 0;

scanf ("%d”, &block start);

scanf ("%s”, write_buffer) ;

if (len >=0) |

if (MFRC522 Debug Write (CardID, block start, write buffer,
strlen(write _buffer)) < 0) {

return —1;

}
} else {

printf (
"Usage:\r\n" "\tread <blockstart>\r\n" "\tdump\r\n"
"\thalt\r\n" "\tclean <blockaddr>\r\n" "\twrite <blockaddr> <data>\r\n");

return 0;

return 0;

}
int tag select (uint8 t *CardID) {
int ret int;
printf(
“Card detected 0x%02X 0x%02X 0x%02X 0x%02X, Check Sum = 0x%02X\r\n”,

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 24 RFID

CardID[0], CardID[1], CardID[2], CardID[3], CardID[4]):

ret _int = MFRC522 SelectTag(CardID) ;
if (ret_int == 0) {

printf ("Card Select Failed\r\n”);

return —1;
} else {

printf (“Card Selected, Type:%s\r\n”,

MFRC522 TypeToString (MFRC522 ParseType (ret_int))) ;
}
ret_int = 0;
return ret_int;
}
In the code, first initialize the MFRC522. If the initialization fails, the program will exit.

ret = MFRC522 Init(A");
if (ret < 0) {

perror ("Failed to initialize”);

exit(-1);

}
In the main function, wait for the command input. If command "scan” is received, the function will begin to
detect whether there is a card close to the sensing area. If a card is detected, the card will be selected and
card UID will be acquired. Then enter the function scan_loop (). If command "quit" or "exit" is received, the
program will exit.

scanf ("%s”, command buffer) ;
if (stremp (command buffer, “scan”) == 0) {
puts ("Scanning”) ;
while (1) {
ret = MFRC522 Check (CardID) ;
if (ret != MI OK) {
printf (".7);
fflush (stdout) ;
continue;
1
ret |= tag select (CardID) ;
if (ret == MI_OK) {
ret = scan_loop (CardID) ;
if (ret < 0) {
goto END_SCAN;
} else if (ret == 1) {
goto HALT;

}
END SCAN: printf(“Card error...”);
HALT: puts(“Halt”);

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

RISl Chapter 24 RFID www.freenove.com [l

} else if (strcmp(command buffer, “quit”) == 0
|| stremp (command buffer, “exit”) == 0) {
return 0;
} else {
puts (“Unknown command”) ;
puts (“scan:scan card and dump”);
puts (“quit:exit program”);
}
/*Main Loop End¥/
}
The function scan_loop() will detect command read, write, clean, halt, dump and do the corresponding
processing to each command. The function of each command and the method have been introduced before.
int scan_loop (uint8 t *CardID) {

while (1) {

char input[32];
int block_start;
DISP_COMMANDLINE () ;
printf ("H02X%02X%02X%02X>", CardID[0], CardID[1], CardID[2], CardID[3]);
scanf ("%s”, input) ;
puts ((char*) input) ;
if (stremp(input, “halt”) == 0) {
return 1;
} else if (stremp(input, “dump”) == 0) {
if (MFRC522 Debug CardDump (CardID) < 0)
return —1;
} else if (stremp(input, “read”) == 0) {
scanf ("%d”, &block start);
if (MFRC522_Debug DumpSector (CardID, block start) < 0) {
return —1;
}
} else if(stremp(input, “clean”) == 0) {
char c;
scanf ("%d”, &block start);
while ((¢c = getchar()) !="\n" && c != EOF)

if (MFRC522 Debug Clean(CardID, block start)) {

return —1;

} else if (stremp(input, “write”) == 0) {
char write buffer[256];

size t len = 0;

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 24 RFID

scanf ("%d”, &block start);
scanf ("%s”, write buffer) ;
if (len >= 0) {
if (MFRC522 Debug Write (CardID, block start, write buffer,
strlen(write buffer)) < 0) {
return —1;
}
}
} else {
printf(
"Usage:\r\n” “\tread <blockstart>\r\n” “\tdump\r\n” ”“\thalt\r\n”
“\tclean <blockaddr>\r\n” “\twrite <blockaddr> <data>\r\n”):
return 0;
}
}
return 0;
}

The header file "mfrc522.h" contains the associated operation method for the MFRC522. You can open the
file to view all the definitions and functions.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

There are two code files for this project. They are respectively under Python2 folder and Python3 folder. Their
functions are the same, but they are not compatible. Code under Python2 folder can only run on Python2.
And code under Python3 folder can only run on Python3.
First observe the project result, and then analyze the code.
1. Use cd command to enter 24.1.1_RFID directory of Python code.
If you use Python2, it is needed to enter Python2 code folder.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/24.1.1_RFID/Python2
If you use Python3, it is needed to enter Python3 code folder.
cd ~/Freenove_RFID_Starter_Kit_for_Raspberry_Pi/Code/Python_Code/24.1.1_RFID/Python3
2. Use python command to execute code "RFID.py".
python RFID.py
After the program is executed, the following contents will be displayed in the terminal:

pi@raspberrypi:

rthon RFID.py

Here, type the command “quit” to exit the program.

Type command "scan”, then the program begins to detect whether there is a card close to the sensing area
of MFRC522 reader. Place an M1-S50 card in the sensing area. The following results indicate that the M1-S50
card has been detected, the UID of which is EGCF5C8EFB (HEX).

read <blockstart=
dump
halt

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range
is 0-63. As is shown below:

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range
is 0-63. This command is used to read the data of data block with address “blockstart”. For example, using
command read 0 can display the content of data block 0. Using the command read 1 can display the content
of data block 1. As is shown below:

CEEFE=> read 0

| E.E.-:: defghi



http://www.freenove.com/
mailto:support@freenove.com

Command dump is used to display the content of all data blocks in all sectors.

Command <address> <data> is used to write “data” to data block with address “address”. Where the address
range is 0-63 and the data length is 0-16. In the process of writing data to the data block, both the contents
of data block before written and after written will be displayed. For example, if you want to write the string
"Freenove" to the data block with address “1”, you can type the following command.

write 1 Freenove

; 7 oo | Freenove
Command clean <address> is used remove the contents of the data block with address "address". For
example, if you want to clear the contents of the data block 1 that has just been written, you can type the
following command.

clean 1

00000 | Freenove

The following is the program code (python2 code):

1 import RPi.GPIO as GPIO

2 import MFRC522

3

4 # Create an object of the class MFRC522
5 mfrc = MFRC522. MFRC522 ()

6

7 def dis ConmandLine():

8 print s

9 def dis CardID(cardID):

10 print % (cardID[0], cardID[1], cardID[2], cardID[3], cardID[4]),
11 def setup():

12 print

13 print

14 pass

15

16 def loop():

17 while(True) :



http://www.freenove.com/
mailto:support@freenove.com

262

Chapter 24 RFID

dis_ConmandLine ()
inCmd = raw_input ()
print inCmd
if (inCmd = "scan”):
print “Scanning ... ”
isScan = True
while isScan:
# Scan for cards
(status, TagType) = mfrc. MFRC522 Request (mfrc. PICC REQIDL)
# If a card is found
if status == mfrc.MI OK:
print “Card detected”
# Get the UID of the card
(status, uid) = mfrec. MFRC522 Anticoll ()
# If we have the UID, continue
if status == mfrc.MI OK:
print “Card UID: "+ str(map(hex, uid))
# Select the scanned tag
if mfrc. MFRC522 SelectTag(uid) == 0:
print “"MFRC522 SelectTag Failed!”
if cmdloop (uid) < 1 :
isScan = False
elif inCmd == "quit”:
destroy ()
exit (0)

else :

”,” ”, 7

print “\tUnknown command\n”+”\tscan:scan card and dump\n”+”\tquit:exit

program\n”

def cmdloop(cardID) :
pass
while (True) :
dis_ConmandLine ()
dis_CardID(cardID)
inCmd = raw_input ()
cemd = inCmd. split (" )
print cmd
if (emd[0] == "read”):
blockAddr = int(cmd[1])
if ((blockAddr<0) or (blockAddr>63)):
print “Invalid Address!”
# This is the default key for authentication
key = [0xFF, 0xFF, OxFF, 0xFF, OxFF, 0xFF]
# Authenticate

B support@freenove.com

www.freenove.com Il



http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 24 RFID

status = mfrc. MFRC522 Auth (mfrc. PICC_AUTHENT1A, blockAddr, key, cardID)
# Check if authenticated
if status == mfrc.MI OK:
mfrc. MFRC522 Readstr (blockAddr)
else:
print “Authentication error”

return 0

elif emd[0] == "dump”:
# This is the default key for authentication
key = [0xFF, O0xFF, 0xFF, 0xFF, 0xFF, 0xFF]
mfrc. MFRC522 Dump Str (key, cardID)

elif cemd[0] == "write”:
blockAddr = int(cmd[1])
if ((blockAddr<0) or (blockAddr>63)):
print “Invalid Address!”
data = [0]*16

if (len(cmd)<2) :
data = [0]*16
else:
data = cmd[2][0:17]

data = map(ord, data)
if len(data)<16:
data+=[0]*(16-1en(data))
# This is the default key for authentication
key = [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]
# Authenticate
status = mfrc. MFRC522 Auth (mfrc. PICC_AUTHENT1A, blockAddr, key, cardID)
# Check if authenticated
if status == mfrc.MI OK:
print “Before writing , The data in block %d is: “%(blockAddr)
mfrc. MFRC522 Readstr (blockAddr)
mfrc. MFRC522 Write (blockAddr, data)
print “After written , The data in block %d is: “%(blockAddr)
mfrc. MFRC522 Readstr (blockAddr)
else:
print “Authentication error”

return 0

elif cmd[0] == "clean”:
blockAddr = int(cmd[1])
if ((blockAddr<0) or (blockAddr>63)):
print “Invalid Address!”

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

pIZM Chapter 24 RFID www.freenove.com [l

data = [0]*16
# This is the default key for authentication
key = [0xFF, 0xFF, OxFF, 0xFF, 0xFF, 0xFF]
# Authenticate
status = mfrc. MFRC522 Auth (mfrc. PICC_AUTHENT1A, blockAddr, key, cardID)
# Check if authenticated
if status == mfrc.MI OK:
print “Before cleaning , The data in block %d is: “%(blockAddr)
mfrc. MFRC522 Readstr (blockAddr)
mfrc. MFRC522 Write (blockAddr, data)
print “After cleaned , The data in block %d is: “%(blockAddr)
mfrc. MFRC522 Readstr (blockAddr)
else:

print “Authentication error”

return 0
elif emd[0] == "halt”;
return 0

else :
print “Usage:\r\n” “\tread <blockstart>\r\n” “\tdump\r\n” “\thalt\r\n”
“\tclean <blockaddr>\r\n” “\twrite <blockaddr> <data>\r\n”

def destroy():
GPIO. cleanup ()

if name_ =" main ”:
setup ()
try:
Loop ()
except KeyboardInterrupt: # Ctrl+C captured, exit
destroy ()

In the code, first create an MFRC522 class object.
! mfrc = MFRC522.MFRC522 ()
In the function loop, wait for the command input. If command "scan" is received, the function will begin to
detect whether there is a card close to the sensing area. If a card is detected, the card will be selected and
card UID will be acquired. Then enter the function scan_loop (). If command "quit" or "exit" is received, the
program will exit.

if (inCmd == "scan”):

print “Scanning ..

”

isScan = True
while isScan:
if cmdloop (uid) < 1 :

isScan = False

elif inCmd == “quit”:

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www freenove.com Chapter 24 RFID

destroy ()
exit (0)
else :
print “\tUnknown command\n”+”\tscan:scan card and dump\n”+”\tquit:exit

program\n”

The function cmdloop() will detect command read, write, clean, halt, dump and do the corresponding
processing to each command. The function of each command and the method have been introduced before.
def cmdloop(cardID) :
pass
while(True) :
dis_ConmandLine ()
dis_CardID(cardID)
inCmd = raw_input ()
emd = inCmd. split (" 7)
print cmd
if(emd[0] == "read”):

[©]
—
[
[
o
=
ol
—
[e)
[t

|

1

” dump” .

elif cmd[0] == "write”:

elif cmd[0] == “clean”:
elif emd[0] == "halt”:
return 0
else :
print “Usage:\r\n” “\tread <blockstart>\r\n” “\tdump\r\n” “\thalt\r\n”
“\tclean <blockaddr>\r\n” “\twrite <blockaddr> <data>\r\n”
The file "MFRC522.py" contains the associated operation method for the MFRC522. You can open the file to
view all the definitions and functions.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

266

Chapter 25 WeblOPi & 10T www.freenove.com [l

Chapter 25 WeblOPi & |OT

In this chapter, we will learn how to use GPIO to control RPi through remote network and how to build a
WebIOPi service on the RPI.

“IOT" is Internet of Things. The development of IOT will greatly change our habits and make our lives more
convenient and efficient.

“WebIOPi” is the Raspberry Pi Internet of Things Framework After configuration for WeblOPi on your RPi is
completed, you can use web browser on mobile phones, computers and other equipments to control, debug
and use RPi GPIO conveniently. It also supports many commonly used communication protocol, such as serial,
I2C, SPI, etc., and a lot of equipments, like AD/DA converter pcf8591 used before and so on. Then on this
basis, through adding some peripheral circuits, you can create your own smart home.

For more details about WebIOPi, please refer to: http://webiopi.trouch.com/

Project 25.1 Remote LED

In this experiment, we need build a WeblOPi service, and then control the RPi GPIO to control a LED through
Web browser of phone or PC.

Component List

Raspberry Pi 3B x1 LED x1 Resistor 220Q x1
GPIO Extension Board & Wire x1
BreadBoard x1

Jumper M/M x2

—ea.a. R 4 4494

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com
http://webiopi.trouch.com/

N~
<o}
N

Chapter 25 WeblOPi & IOT

B www .freenove.com

Circuit

Schematic diagram

-
0
2
6

18
B2
el
P
28
32
36
38
11

Rt
XxX000000Q0000
F¥oooo “oooo

p— - QOO0 QOO0

=

—
© __<ERN___wel28
25000079%285000
ooooooO®osaooon
NNOVVO=2=2nn00000

Raspberry Pi

GPIO Extension Shield
GND

—

—

L]
1

Hardware connection

pIoIYs uoisualx3 Oido Id Aueqdsey

Ay

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

268

Chapter 25 WeblOPi & 10T www.freenove.com [l

Build WeblOPi Service Framework

The following is the key part of this chapter. The installation steps refer to WeblOPi official. And you also can
directly refer to the official installation steps. The latest version (until 2016-6-27) WeblOPi is 0.7.1. So, you
may have some problems in use. We will explain these problems and provide the solution in the following
installation steps.
Here are the steps to build WebIOPi:
Installation
1. visit http://webiopi.trouch.com/DOWNLOADS.html to get the latest installation package. You can use the
following command to obtain.
wget http://sourceforge.net/projects/webiopi/files/WeblOPi-0.7.1.tar.gz
2. Extract the package and generate a folder named "WeblOPi-0.7.1". Then enter the folder.
tar xvzf WeblOPi.tar.gz
cd WeblOPi-0.7.1
3. Patch for Raspberry Pi B+, 2B, 3B, 3B+.
wget https://raw.githubusercontent.com/doublebind/raspi/master/webiopi-pi2bplus.patch
patch -pl -i webiopi-pi2bplus.patch
4. Run setup.sh to start the installation, and the process need a period of time to wait.
sudo ./setup.sh

Run
After the installation is completed, you can use the webiopi command to start running.

$ sudo webiopi [-h] [-c config] [-] log] [-s script] [-d] [port]

Options:
-h, --help Display this help
-c, --config file Load config from file
-1, --log file Log to file
-s, --script  file  Load script from file

-d, --debug Enable DEBUG
Arguments:
port Port to bind the HTTP Server

For instance, to start with verbose output and the default config file :
sudo webiopi -d -c /etc/webiopi/config
The Port is 8000 in default.
Until now, WeblOPi has been launched, and you can press "Ctrl+C" to terminate service.
Access WeblOPi over local network
Under the same network, use mobile phone or PC browser to open your RPi IP address, and add port number
like 8000. For example, my raspberry pi IP address is 192.168.1.109. Then, in the browser, should input:
http://192.168.1.109:8000/
Default user is "webiopi" and password is "raspberry"”,

Then, enter the main control interface:

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com
http://webiopi.trouch.com/DOWNLOADS.html
http://sourceforge.net/projects/webiopi/files/WebIOPi-0.7.1.tar.gz/download
https://raw.githubusercontent.com/doublebind/raspi/master/webiopi-pi2bplus.patch
http://192.168.1.109:8000/

B www.freenove.com Chapter 25 WeblOPi & IOT

WebIOPi Main Menu

GPT0 Header

Control and Debuz the Raspberry F1 GFIO with a display which looks like the physical header.

GPIO List

Control and Debugz the Raspberrvy F1 GFIO ordered in a single colummn.

Serial Monitor

Use the browser to play with Serial interfaces configured in WebIOPi.

Devices Monitor

Control and Debug devices and circuits wired to vour Pi and configured in WebIOPi.

Click on GPIO Header to enter the GPIO control interface.

ouT

>
3

AE
==

erion[_|[]eros [
crounD [ [Jerio7  [E0
--iﬁllzln

cpio 5[] [E&J rounp

IR [l | 32 [RER N
crio 13 [EE) [EY srounp
IRE] 35 | 36 (IR NIND
P 37 | 38 [ NN
crounD [ Y sro21 [0

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

270

Chapter 25 WeblOPi & 10T www.freenove.com [l

Control methods:

® Click/Tap the OUT/IN button to change GPIO direction.

® Click/Tap pins to change the GPIO output state.

Completed

According to the circuit we build, set GPIO17 to OUT, then click Header11 to control the LED.

About WeblOPI

The reason for changing file in the configuration process is that the model of new generation of RPi CPU is
different form old one, which result in some of the issues during using.

WebIOPi has not provide corresponding installation package for latest RPi timely. Therefore, there are two
changes in the configuration, and some BUG may exist to cause some problems to WebIlOPi function. We
look forward to that the author of WeblOPi to provide a complete set of the latest version of installation
package to fit with RPi. WeblOPi can achieve far more than this, so we also look forward to learning and
exploring with the funs.

B support@freenove.com


http://www.freenove.com/
mailto:support@freenove.com

B www .freenove.com What's next? AN

What's next?

Thanks for your reading.

This tutorial is all over here. If you find any mistakes, missions or you have other ideas and questions about
contents of this tutorial or the kit and etc, please feel free to contact us, and we will check and correct it as

soon as possible.

If you want to learn more about Arduino, Raspberry Pi, smart cars, robots and other interesting products in
science and technology, please continue to focus on our website. We will continue to launch cost-effective,

innovative and exciting products.

Thank you again for choosing Freenove products.

support@freenove.com [l


http://www.freenove.com/
mailto:support@freenove.com

	Contents
	Preface
	Raspberry Pi
	Install the System
	Component List
	Required Components

	Optional Components
	Required Accessories for Monitor
	Required Accessories for Remote Desktop

	Raspbian System
	Tool and System image
	Software Tool
	Selecting System

	Write System to Micro SD Card
	Start Raspberry Pi

	Remote desktop & VNC
	SSH
	Remote Desktop Connection & xrdp
	Login to Windows remote desktop
	VNC Viewer & VNC
	Wi-Fi


	Chapter 0 Preparation
	Install WiringPi
	WiringPi Installation Steps

	Obtain the Project Code
	Python2 & Python3
	Code Editor
	vi, nano, Geany
	Summary

	GPIO
	BCM GPIO Numbering
	PHYSICAL Numbering
	WiringPi GPIO Numbering

	GPIO Extension Board
	Breadboard Power Module
	Next

	Chapter 1 LED
	Project 1.1 Blink
	Component List
	Component knowledge
	LED
	Resistor

	Circuit
	Code
	C Code 1.1.1 Blink
	Python Code 1.1.1 Blink



	Chapter 2 Button & LED
	Project 2.1 Button & LED
	Component List
	Component knowledge
	Push button

	Circuit
	Code
	C Code 2.1.1 ButtonLED
	Python Code 2.1.1 ButtonLED


	Project 2.2 MINI table lamp
	Debounce for Push Button
	Code
	C Code 2.2.1 Tablelamp
	Python Code 2.2.1 Tablelamp



	Chapter 3 LEDBar Graph
	Project 3.1 Flowing Water Light
	Component List
	Component knowledge
	LED bar graph

	Circuit
	Code
	C Code 3.1.1 LightWater
	Python Code 3.1.1 LightWater



	Chapter 4 Analog & PWM
	Project 4.1 Breathing LED
	Component List
	Circuit knowledge
	Analog & Digital
	PWM

	Circuit
	Code
	C Code 4.1.1 BreathingLED
	Python Code 4.1.1 BreathingLED



	Chapter 5 RGBLED
	Project 5.1 Colorful LED
	Component List
	Circuit
	Code
	C Code 5.1.1 ColorfulLED
	Python Code 5.1.1 ColorfulLED



	Chapter 6 Buzzer
	Project 6.1 Doorbell
	Component List
	Component knowledge
	Buzzer
	Transistor

	Circuit
	Code
	C Code 6.1.1 Doorbell
	Python Code 6.1.1 Doorbell


	Project 6.2 Alertor
	Code
	C Code 6.2.1 Alertor
	Python Code 6.2.1 Alertor



	Chapter 7 PCF8591
	Project 7.1 Read the Voltage of Potentiometer
	Component List
	Circuit knowledge
	ADC
	DAC

	Component knowledge
	Potentiometer
	Rotary potentiometer
	PCF8591
	I2C communication

	Circuit
	Configure I2C
	Enable I2C
	Install I2C-Tools

	Code
	C Code 7.1.1 pcf8591
	Python Code 7.1.1 pcf8591



	Chapter 8 Potentiometer & LED
	Project 8.1 Soft Light
	Component List
	Circuit
	Code
	C Code 8.1.1 Softlight
	Python Code 8.1.1 Softlight



	Chapter 9 Potentiometer & RGBLED
	Project 9.1 Colorful Light
	Component List
	Circuit
	Code
	C Code 9.1.1 Colorful Softlight
	Python Code 9.1.1 ColorfulSoftlight



	Chapter 10 Photoresistor & LED
	Project 10.1 NightLamp
	Component List
	Component knowledge
	Photoresistor

	Circuit
	Code
	C Code 10.1.1 Nightlamp
	Python Code 10.1.1 Nightlamp



	Chapter 11 Thermistor
	Project 11.1 Thermometer
	Component List
	Component knowledge
	Thermistor

	Circuit
	Code
	C Code 11.1.1 Thermometer
	Python Code 11.1.1 Thermometer



	Chapter 12 Joystick
	Project 12.1 Joystick
	Component List
	Component knowledge
	Joystick

	Circuit
	Code
	C Code 12.1.1 Joystick
	Python Code 12.1.1 Joystick



	Chapter 13 Motor & Driver
	Project 13.1 Control Motor with Potentiometer
	Component List
	Component knowledge
	Motor
	L293D

	Circuit
	Code
	C Code 13.1.1 Motor
	Python Code 13.1.1 Motor



	Chapter 14 Relay & Motor
	Project 14.1.1 Relay & Motor
	Component List
	Component knowledge
	Relay
	Inductor

	Circuit
	Code
	C Code 14.1.1 Relay
	Python Code 14.1.1 Relay



	Chapter 15 Servo
	Project 15.1 Servo Sweep
	Component List
	Component knowledge
	Servo

	Circuit
	Code
	C Code 15.1.1 Sweep
	Python Code 15.1.1 Sweep



	Chapter 16 Stepping Motor
	Project 16.1 Stepping Motor
	Component List
	Component knowledge
	Stepping Motor
	ULN2003 Stepping motor driver

	Circuit
	Code
	C Code 16.1.1 SteppingMotor
	Python Code 16.1.1 SteppingMotor



	Chapter 17 74HC595 & LEDBar Graph
	Project 17.1 Flowing Water Light
	Component List
	Component knowledge
	74HC595

	Circuit
	Code
	C Code 17.1.1 LightWater02
	Python Code 17.1.1 LightWater02



	Chapter 18 74HC595 & 7-segment display.
	Project 18.1 7-segment display.
	Component List
	Component knowledge
	7-segment display

	Circuit
	Code
	C Code 18.1.1 SevenSegmentDisplay
	Python Code 18.1.1 SevenSegmentDisplay


	Project 18.2 4-Digit 7-segment display
	Component List
	Component knowledge
	4 Digit 7-Segment Display

	Circuit
	Code
	C Code 18.2.1 StopWatch
	Python Code 18.2.1 StopWatch



	Chapter 19 74HC595 & LED Matrix
	Project 19.1 LED Matrix
	Component List
	Component knowledge
	LED matrix

	Circuit
	Code
	C Code 19.1.1 LEDMatrix
	Python Code 19.1.1 LEDMatrix



	Chapter 20 LCD1602
	Project 20.1 I2C LCD1602
	Component List
	Circuit
	Code
	C Code 20.1.1 I2CLCD1602
	Python Code 20.1.1 I2CLCD1602



	Chapter 21 Hygrothermograph DHT11
	Project 21.1 Hygrothermograph
	Component List
	Component knowledge
	Circuit
	Code
	C Code 21.1.1 DHT11
	Python Code 21.1.1 DHT11



	Chapter 22 Matrix Keypad
	Project 22.1 Matrix Keypad
	Component List
	Component knowledge
	4x4 Matrix Keypad

	Circuit
	Code
	C Code 22.1.1 MatrixKeypad
	Python Code 22.1.1 MatrixKeypad



	Chapter 23 Ultrasonic Ranging
	Project 23.1 Ultrasonic Ranging
	Component List
	Component Knowledge
	Circuit
	Code
	C Code 23.1.1 UltrasonicRanging
	Python Code 23.1.1 UltrasonicRanging



	Chapter 24 RFID
	Project 24.1 RFID
	Component List
	Component Knowledge
	RFID
	MFRC522
	Mifare1 S50 Card

	Circuit
	Configure SPI
	Enable SPI
	Install Python module SPI-Py

	Code
	C Code 24.1.1 RFID
	Python Code 24.1.1 RFID



	Chapter 25 WebIOPi & IOT
	Project 25.1 Remote LED
	Component List
	Circuit
	Build WebIOPi Service Framework
	Installation
	Run
	Access WebIOPi over local network
	Completed

	About WebIOPi


	What's next?

